Carbon Hot Spot

Andrea Fassbender (MBARI) & Stuart Bishop (NCSU)

PSMI Webinar February 22, 2017

NOAA-

. CLIMP

Image: PMEL OCS

Motivation: Global Patterns of Ocean Carbon Uptake and Physics

after Takahashi et al., 2002, 2009

Motivation: Global Patterns of Ocean Carbon Uptake and Physics

Motivation: Global Patterns of Ocean Carbon Uptake and Physics

Motivation: Prior WBC Work has Not Targeted Carbon Uptake

Dynamic States of the Kuroshio Extension

Qiu and Chen, 2005, Oka and Qiu 2015

Dynamic States of the Kuroshio Extension

Qiu and Chen, 2005, Oka and Qiu 2015

Dynamic States of the Kuroshio Extension

140°E 150°E

140°E 150°E

Bishop et al., 2015

Evidence of Bio-Physical Coupling at the Mesoscale

North Pacific Carbon Cycling

Mean Annual Sea-Air CO₂ Flux

North Pacific Carbon Cycling

Mean Annual Sea-Air CO₂ Flux

Fassbender et al., 2016, 2017

2012

2014

2010

2008

North Pacific Carbon Cycling

Different processes dominate seasonal *p*CO₂ changes at OSP and KEO. Mean Annual Sea-Air CO₂ Flux mol C m⁻² yr⁻¹ COSP KEO after Takahashi et al., 2002, 2009

Sea

Air

Fassbender et al., 2016, 2017

Carbon Uptake Processes Near the Kuroshio Extension

Air-Sea CO₂ Exchange and Mode Water Outcrop

Carbon Uptake Processes Near the Kuroshio Extension

Air-Sea CO₂ Exchange and Mode Water Outcrop

Eddy Activity and Biological Production and Export

Fassbender et al., 2017

Carbon Uptake Processes Near the Kuroshio Extension

Carbon Hot Spot Workshop, October 2017

Workshop: "This workshop will convene scientists from the fields of the biogeochemistry, ecology, and ocean physics to explore the integration of observational and numerical modeling tools to link biophysical dynamics with carbon uptake processes and explore feedbacks in Western Boundary Current regions." - OCB

Goal: International process study near Kuroshio Current to evaluate processes that influence ocean carbon uptake and storage.

NSF: Proposals

1. **Modeling proposal** focused on characterizing baselines and decadal variability for mesoscale eddy activity and STMW formation, and their influence on carbon export

Ivana Cerovečki (Scripps), Stuart Bishop (NCSU), and Andrea Fassbender (MBARI)

2. *Carbon Hot Spot* pilot study focused on submesoscale processes, including restratification of the mixed layer, and how they impact STMW formation and carbon export

Stuart Bishop (NCSU), Andrea Fassbender (MBARI), Dongxiao Zhang (JISAO), Meghan Cronin (PMEL), Chris Roman (GSO), Zhaohui Wang (WHOI), Eitarou Oka (U. Tokyo), Ryuichiro Inoue (JAMSTEC), and Takeyoshi Nagai (TUMST)

NSF: Carbon Hot Spot Proposal

Participants: NCSU, MBARI, WHOI, URI, PMEL, JAMSTEC, U. Tokyo, & UW

Observational Assets:

- Ship surveys
- In situ sensors on rosette
 DIC, pH, nitrate
 - Towad WireElver
- Towed WireFlyer
 - + O₂
- •Seagliders (O₂)
- •Saildrone (CO₂)

Assets in Place:

- KEO mooring (pH + CO₂)
- Floats (nitrate)
- Satellites

Assets for Process Study:

- Sediment trap
- •Floats (pH + nitrate + O₂)
- Modeling component

Proposed Ship-Based Wire Flyer Observations

Seaglider Observations

JAMSTEC's Seaglider mission in February to June 2014. There is small-scale structure at the submesoscale observed in the dissolved oxygen record.

Figures courtesy of Ryu Inoue (JAMSTEC)

Seaglider Observations

JAMSTEC's Seaglider mission in February to June 2014. There is small-scale structure at the submesoscale observed in the dissolved oxygen record.

Submesoscale lens observed in Seaglider DO optode

Figures courtesy of Ryu Inoue (JAMSTEC)

Saildrone Observations

	Sensor	Meters from Waterline	Manufacturer & Model
1	pCO ₂	0.5 m depth	PMEL ASVCO2 System
2	Sea Surface Temperature & Salinity	0.5 m depth	Seabird SBE-PRAWLER
3	3D Ultrasonic Anemometer (20Hz)	4.5 m height	Gill WindMaster
4	Thermosalinograph	0.5 m depth	Teledyne Citadel
5	AT/RH – S3 with Radiation Shield	2.2 m height	Rotronic HC2
6	Barometric Pressure	0.2 m height	Vaisala PTB 210
7	SST IR Pyrometer	2.2 m height	Heitronics KT15 II
8	Longwave Radiation	2.2 m height	Eppley PIR
9	Sunshine Pyranometer	2.2 m height	Delta-T Devices SPN1
10	Shortwave Radiation	2.2 m height	Unshaded SPN1
11	рН	0.5 m depth	Honeywell Durafet
12	Dissolved Oxygen	0.5 m depth	Aanderaa 4831
13	Fluorescence, Backscatter	0.2 m depth	Wetlabs Triplet
14	Acoustic Doppler Current Profiler	0.2 m depth	RDI Workhorse 300kHz
15	Cameras: Up/Down/Left/Right	2.2 m height	Saildrone Custom Design

Two 14-day cruises: Yokohama to Carbon Hot Spot array aboard R/V Shinsei Maru

January & May 2018

- CTD/water sample stations including CHANOS II DIC, SeaFET pH, & ISUS nitrate.
- Transects between stations using Wire Flyer
- 2 Seagliders deployed in January and recovered in May.
- Saildrone deployed from Guam in January to meet Seagliders and to remain for the duration of Seaglider deployment.
- Ship measurements will be used to build empirical relationships that will be applied to subsurface Seaglider data to close upper ocean carbon budgets.

Proposed Autonomous Vehicle Tracks

Ocean Station Papa

- Mapped Seaglider data to monthly mesoscale.
- Gradients observed to be 10x larger than climatology and in some cases changed sign.

OSMOSIS

• Submesoscale mixed layer instabilities observed.

Carbon Hot Spot

• Seaglider and Saildrone tracks could follow satellite tracks.

Challenges We Knowingly Face

<u>Planning:</u>

- International collaboration with government agencies involved
- International shipping (hazmat)
- + Coordination of international proposal cycles/timelines
- International asset and data sharing

Field work:

- Strong currents how to keep vehicles on desired track?
- Calibrating gliders how to do well in patchy environment?
- The KE is dynamic we can't predict what state we will observe

<u>Synthesis:</u>

- + Data management multiple partners, lots of data
- Data analysis when to involve modelers?

Questions We Have

- Is there a streamlined way to coordinate (international) funding agencies?
 NOAA is already involved through KEO.
- How best can we engage modelers early on so that observations are optimized to assess/improve models?
- After the October 2017 workshop, what are the next steps forward in developing a process study? Writing a proposal, engaging with funding agencies, hosting a smaller PI meeting to hash out details?
- ◆ Is there an ideal number of lead PIs for a process study of this size?

Potential Deliverables:

- + New insights on how to observe WBC regions globally (OceanObs 2019)
- + Better understanding of mode water and eddy effects on carbon cycling
- + Improved model parameterizations of bio-physical processes
- Enhanced collaboration between modelers and observationalists

Are there additional opportunities for deliverables to consider at this stage?

Carbon Hot Spot

Andrea Fassbender (MBARI) & Stuart Bishop (NCSU)

PSMI Webinar February 22, 2017

NOAA-

. CLIMA

Image: PMEL OCS

Phys-BGC Empirical Relationships

15-May-2009

15-May-2009

15-May-2009

