North Atlantic Aerosols and Marine Ecosystems Study (NAAMES)

Why?

The abundance and growth of the plankton is critical to ocean health, fisheries production, atmospheric carbon dioxide levels, and the human goods and services provided by the sea

'Hot Spots' of ocean production (i.e., blooms) occur in many subpolar regions, but we do not yet understand how climate and ecology control their vital annual plankton cycles

Plankton ecosystems also emit aerosols into the atmosphere that impact clouds and climate

The NAAMES project aims to provide new insights on the function of plankton ecosystems and their connection to atmospheric aerosols, clouds, and climate

NAAMES is an interdisciplinary investigation of the annual plankton cycle and its associated atmospheric aerosols

Overarching Science Goals

Goal #1: Define environmental and ecological controls on plankton communities to improve predictions of their structure and function in a warmer future ocean

Goal #2: Define linkages between ocean ecosystem properties and biogenic aerosols to improve predictions of marine aerosolcloud-climate interactions with a warmer future ocean

Baseline Science Objectives

Objective #1: Characterize plankton ecosystem properties during primary phases of the annual cycle in the North Atlantic and their dependence on environmental forcings

Objective #2: Determine how primary phases of the North Atlantic annual plankton cycle interact to recreate each year the conditions for an annual bloom

Objective #3: Resolve how remote marine aerosols and boundary layer clouds are influenced by plankton ecosystems in the North Atlantic

ut l	Participants	Role	Affiliation
Jei	Behrenfeld, Mike	Principal Investigator	OSU
anagen	Kleb, Mary	Project Manager	NASA LaRC
	Hostetler, Chris	Project Scientist	NASA LaRC
	Moore, Richard	Deputy Project Scientist	NASA LaRC
Σ	Proctor, Christopher	Project Data Manager	NASA GSFC
Ct	Chen, Gao	Flight Planner	NASA LaRC
je	Shook, Michael	Meteorologist	LaRC/SSAI
Pro	Ziemba, Luke	Logistics /C-130 Platform Manager	NASA LaRC
nce	Doney, Scott	BEC-CESM Modeling	WHOI
	Franz, Bryan	Ocean Color Analyses	NASA GSFC
	Gaube, Peter	Mesoscale Physics	APL
	Hu, Chuanmin	GCAS Analyses	USF
cie	Hu, Yongxiang	Ocean/Cloud Satellite Analyses	NASA LaRC
t S	Lindo, David	Mesoscale Modeling	City College, NY
G	Liu, Hongyu	GEO-Chem Aerosol Modeling	NASA LaRC
ō	Milligan, Allen	Ocean Primary Production	OSU
Ē	Westberry, Toby	Satellite Analysis /In Situ Optics	OSU
	Wood, Robert	Cloud modeling	UW
	Bates, Tim	Aerosol Flux	UW
nts	Boss, Emmanuel	Ocean optics, Profiling Floats	UM
le	Brooks, Sarah	Aerosol and CCNuclei	TAMU
nu	Carlson, Craig	DOC Measurements	UCSB
ï	Giovannoni, Stephen	VOCs, Plankton Taxonomy	OSU
lns	Halsey, Kimberly	VOC precursors & processing	OSU
ø	Maritorena, Stephane	OC Algorithm Development	UCSB
e	Menden-Deuer,	Microzooplankton Grazing	URI
-	Susanne		
cie	Nelson, Norman	CDOM /Bio-Optics	UCSB
So	Russell, Lynn	In Situ Aerosol	UCSD
hif	Saltzman, Eric	In Situ Trace Gases & Aerosol	UCI
S	Siegel, David	Ocean optics, Remote Sensing	UCSB

	Participants	Role	Affiliation
	Anderson, Bruce	LARGE Aerosol & Trace Gases	NASA LaRC
s ce	Cairns, Brian	RSP; Ocean-Aerosol-Cloud RS	NASA GISS
int en	Chowdhary, Jacek	RSP; Aerosol Analyses	NASA GISS
Sci	Ferrare, Richard	HSRL; Aerosol Analyses	NASA LaRC
orne (strui	Hair, John Janz, Scott	HSRL; Ocean-Aerosol-Cloud RS GCAS; Ocean Color RS	NASA LaRC NASA GSFC
Airbo & In	Moore, Richard	LARGE; Cloud Microphysics and Aerosol-Cloud Interactions Analyses	NASA LaRC
	Redemann, Jens	4STAR; Aerosol Optical Depth	NASAARC
	Wisthaler, Armin	PTR-MS; Organic Trace Gases	Innsbruck
ght ns	Cropper, Mike	C-130 Airborne Science Mission	NASA WEE
:E :B	Griffin, Kelly	C-130 Logistics and Mission Manager	NASA WFF
ort	Nowicki, Martin	C-130 Integration/Operations Engineer	NASA WFF
g g			
30			

NAAMES Science Team Members

- Annually repeated North Atlantic plankton bloom is the largest in global ocean
- Bloom is associated with significant biogenic aerosol loads, with long-distance transport
- Ecological and physical processes controlling bloom development are strongly debated, but clearly linked to climate variability
- Improved understanding of bloom dynamics and associated aerosols will reduce uncertainties in projections of future change and implications to ocean productivity and climate

- Four field campaigns
- Target contrasting 'states' of the annual plankton cycle and associated aerosols

Bloom initiation: November-December Accumulation phase: March-April Bloom climax: May-June Deceleration phase: September-October

• Capitalize on natural meridional gradients to plankton 'states'

The *Contrasting States* of the Plankton Cycle

- 26-day ship deployments during each campaign

 Campaign #1: Bloom initiation; R/V Atlantis, Nov 5 Dec 2, 2015
 Campaign #2: Bloom climax; R/V Atlantis, May-June 2016
 Campaign #3: Deceleration phase; R/V Atlantis, September 2017
 Campaign #4: Accumulation phase; R/V Atlantis, March, 2018
- **Common default profile:** Woods Hole transects to/from turning points, primary science w/ daily stations (40°N 57°N, ~40°W)
- **Flexibility:** Departure/arrival port, direction of transect, latitudinal extent (particularly Deceleration and Accumulation phases)
- Ocean Biological Measurements: Biological composition & stocks, rates of production, accumulation, and loss processes
- Aerosol Measurements: Concentrations and production rates of aerosol precursors in the surface ocean, sea-air transfer rates, lower troposphere biogenic aerosol concentrations
- Optical Measurements: Inherent optical properties, apparent optical properties, water leaving radiance spectra - optical measurements link in-situ data to remote sensing

Actual transect is informed by real-time eddy field

- Autonomous Bio-Argo Floats: 3 to 6 deployments per campaign along primary science transect
- Surface Drifters: 20 deployments per campaign along primary science transect
- Autonomous Assets:
 - 1) Provide sustained observations pre-campaign and post campaign and enable station targeting
 - 2) Provide 'bread crumb trail' for airborne observations
 - 3) Allow evaluation of predictive capacity from ship measurements ('ecological forecasting' skill)

- High- and low-altitude remote sensing and in-situ aerosol measurements conducted from NASA C-130 aircraft
- Aircraft deployments based at St. John's Bay, Canada
- Deployment profile: Departure flight toward ship location during primary science transect, measure ocean and aerosol properties at/around ship location, overfly surface drifter areas, overfly upcoming ship transect, return to base.
- Goal: 6 successful science flights per campaign
- Aircraft measurements:
 - 1) link ship aerosol and ocean biological observations to satellite spatial scales
 - 2) allow aerosol/cloud sampling upwind and downwind of ship
 - 3) allow assessment of spatial variability

- High Spectral Resolution Lidar (HSRL): Vertical profiling of clouds, aerosols, and ocean plankton
- Research Scanning Polarimeter (RSP): Columnintegrated cloud, aerosol, and plankton properties
- GeoCAPE Airborne Simulator (GCAS): Plankton and carbon stocks from hyperspectral ocean color measurements
- Spectrometer for Sky-Scanning Sun-Tracking Atmopheric Research (4STAR): Downwelling sunlight and atmospheric chemical composition

GCAS

4STAR

- Satellite remote sensing: ocean color, lidar, and altimetry provide long-term, basin scale context of NAAMES field observations
- Modeling: Allows integration of NAAMES observation into system function, extension of NAAMES results to future forecasts, comparison of NAAMES-resolved processes to other ocean areas, and campaign planning

Ocean circulation-ecosystem modeling (WHOI) Mesoscale processes (UW/City College of NY) Aerosol modeling (LaRC) Cloud modeling (UW)

NAAMES Website: <u>http://naames.larc.nasa.gov/</u>

Baseline and Threshold Mission Requirements

Redundancy in ecosystem observations - 'property' not 'measurement' 1.

Measurements also include characterization of zooplankton communities, bacterial diversity, dissolved and particulate organic carbon stocks and remineralization, viral mortality, phytoplankton diversity, optical and physical properties, and much more... 13

Baseline and Threshold Mission Requirements

2. Redundancy in aerosol observations - 'property' not 'measurement'

Measurements also include a diversity of ship-based measurements providing a thorough characterization of aerosols immediately above the ocean surface, air-sea transfer, in-water aerosol precursors, and much more...

Baseline and Threshold Mission Requirements

3. Redundancy in airborne observations - 'property' not 'measurement' "Are core ecosystem properties observed from the ship representative of properties measured at the satellite pixel level?"

High Spectral Resolution Lidar (HSRL) clouds, aerosols, ocean plankton

- Research Scanning Polarimeter (RSP) clouds, aerosols, ocean plankton
- *GeoCAPE Airborne Simulator* (GCAS) ocean plankton
- Langley Aerosol Research Group Experiment (LARGE) aerosols

Data Management

	Ship Measurements / Ocean Properties	Aircraft Measurements / Aerosol Properties
Data manager	Christopher Proctor	Gao Chen
DAAC	Ocean Biology DAAC (GSFC)	Atm. Sci. Data Center (LaRC)
Project Data Repository	Ocean Bio. Processing Group site (OBPG @ GSFC)	Airborne Sci. Data for Atm. Composition site (ASD-AC @ LaRC)
Preliminary data latency	6 months	1 month
Final data latency	12 months after field experiment ends	12 months after field experiment ends

Campaign #1

Highlights (preliminary)

- Phytoplankton concentrations were low, populations were diverse (including many larger species), and all in very good physiological condition
- Phytoplankton division rates were generally greater than loss rates (the bloom was already beginning!)
- Some of the lowest aerosols ever measured (major potential for cloud effects)
- Aerosols were a mixture of sea salts and continental/marine organics
- Autonomous floats and drifters followed very different trajectories

Campaign #2

Highlights (preliminary)

- Phytoplankton concentrations were at the bloom climax, populations were diverse, diatoms were not dominant, good physiological condition
- Phytoplankton division and loss rates were both proportionately elevated
- Aerosol levels elevated with significant marine biogenic component
- Witnessed a 'disturbance recovery' event, and documented evolution of plankton populations and biogenic aerosols
- Sampled aerosol sea-air transfer at the highest wind levels on record

May Cruise, Station 4: Recovery after wind mixing event

Thomas Bell, UCI

Example Airborne Data: HSRL lidar

Challenges

- Assignment of C-130: increased costs, modification challenges to schedule, breakdowns
- Ship scheduling: requirement for fixed features challenges flexibility within UNOLS scheduling (particularly as NAAMES proceeds), hits to reserves for relocating ship
- Cloudiness: compromising ship-aircraft match-ups
- Interdisciplinary Science

North Atlantic Aerosols and Marine Ecosystems Study

NAAMES

http://naames.larc.nasa.gov

Backup

Measurements/Instruments/Payload – Continued

HSRL

RSP

Airborne Remote Sensing Instruments and Measurements

	Instrument and Relation to Objectives	Geophysical Products
		Chlorophyll-a concentration
GCAS		CDOM absorption (440nm)
•	Hyperspectral ocean color products	Particulate backscatter coeff. (440nm)
•	Atmospheric trace gas measurements	Diffuse attenuation coeff. (Kd490)
•	Relate ship-scale to satellite-scale measurement	Euphotic depth
•	GeoCAPE prototype satellite instrument	Slant column atmospheric NO-2
		Slant column atmospheric O ₃
HSRL-1		Aerosol backscatter (532/1064nm)
•	Aerosol and cloud properties	Aerosol extinction (532nm)
•	Ocean properties	Aerosol & cloud depolarization (532/1064nm)
•	Relate ship-scale to satellite-scale measurements	Ocean diffuse attenuation coeff. (532nm)
•	ACE prototype satellite instrument	Ocean particulate backscatter coeff. (532nm)
		Aerosol optical depth for each mode of a bimodal
		distribution
		Aerosol size: effective radius
		Aerosol size: effective variance
	Aerosol and cloud properties Ocean properties Relate ship-scale to satellite-scale measurements ACE prototype satellite instrument	Aerosol Single Scatter Albedo
DCD		Cloud top effective radius
•		Cloud top effective variance
		Cloud mean effective radius
		Cloud optical depth
		Liquid Water Path
ľ		Cloud Thickness
		Cloud droplet number concentration
		Water Leaving Radiance
		Chlorophyll concentration
		CDOM absorption (410nm)
		Ocean particulate backscatter coeff.
4STAR		Spectrally resolved aerosol optical depth (350 to 1000nm)
•	Facilitate RSP and GCAS retrievals	above the aircraft for constraining nadir-viewing RSP and
		GCAS retrievals.

GCAS

4STAR

Measurements/Instruments/Payload – Continued

Ship-Based Ecosystem Measurements

Measurements/Instruments/Payload – Continued

Airborne and Ship-Based Aerosol and Trace Gas Measurements

Geophysical Property	Instrument	Platform
0	LGR CRD	Aircraft
IOx	LGR CRD	Aircraft
Iltrafine CN, Total, Nonvolatile CN	TSI 3025, (2) TSI 3772	Aircraft
Aerosol Particle Size	TSI SMPS, DMT UHSAS, TSI 3321	Aircraft
Ionvolatile Particle Size	TSI SMPS	Aircraft
CCN spectra	DMT-CCN	Aircraft
cattering (450, 550, 700nm λ)	TSI 3563	Aircraft
cattering humidity dependence, f(RH)	TSI 3563	Aircraft
Absorption (467, 530, 660nm λ)	PSAP	Aircraft
Black carbon mass and size	DMT SP2	Aircraft
Vater Soluble Organics	Filter Sampling - TOC	Aircraft
Ion-Refractory Aerosol Composition	HR-ToF-AMS	Aircraft
Bio-Aerosol Number, Size	DMT WIBS-IV	Aircraft
Cloud Particle Size	DMT CAPS	Aircraft
Jltrafine CN	GRIMM 5.400	Ship
Aerosol Particle Size	BMI SEMS, TSI APS (3321), GRIMM 1.1.08	Ship
Ionvolatile Particle Size	BMI SEMS	Ship
cattering (450, 550, 700nm λ)	TSI 3563	Ship
Absorption (467, 530, 660nm λ)	PSAP	Ship
CCN Spectra	DMT CCN	Ship
Black carbon mass	DMT SP2	Ship
Ion-refractory Composition	HR-ToF-AMS	Ship
Drganic composition	Filter/FTIR, PILS/ESI/MS	Ship
Gas-phase organics	PTR/MS	Ship
Gas-phase DMS Seawater volatile organics	CIM Sequil./PTR/MS	Ship
/olatile carbon production/ consumption rates	PTR/MS	Ship

