Variability and trends in the North Atlantic carbon sink

Galen A. McKinley and Amanda Fay University of Wisconsin – Madison

> US CLIVAR AMOC PI Meeting Boulder, CO August 15-17, 2012

Are trends in the global carbon cycle already detectable?

Reduction in fraction of anthropogenic carbon stored in the ocean (Canadell et al. 2007)

Fig. 2. Fraction of the total emissions (F_{Foss} + F_{LUC}) that remains in the atmosphere (A), the land biosphere (B), and the ocean (C).

Modeled-based assessment of global CO_2 sink impacts due to climate feedbacks: 1981-2007 = -0.20 PgC/decade

Mechanism	Sink impact	Regional notes			
Warming	-20%	50% in North Atlantic alone			
Wind change	-63%	>80% in Tropical Pacific>30% in S. OceanCompensation elsewhere			
Heat, Freshwater flux	+15%	In Northern Hemisphere			
Nonlinear	-32%	>65% in Tropics			

LeQuéré et al. 2010

Earlier modeling found that warming to be dominant negative feedback (-84%) on CO_2 sink in first 100yrs after 4xCO2 pulse (Sarmiento and LeQuéré, 1996)

Outline

 Background: Ocean carbon sink trends from pCO₂ data and models

- North Atlantic trends from in situ pCO₂ data
 - Gyre-scale biomes
 - Distinguishing variability from trends

Trends from surface ocean pCO_2 : If pCO_2^{atm} only change, i.e. circulation, biology constant

"Equilibration"
dpCO₂^{s.ocean}/dt =
dpCO₂^{atm}/dt

 $d\Delta pCO_2/dt = 0$ $d(CO_2Flux)/dt = 0$

STEADY SINKS AND SOURCES

As corollary, $dpCO_2^{s.ocean}/dt \neq dpCO_2^{atm}/dt$ has been interpreted as a change in flux *due to change in biology or circulation*

dpCO₂^{s.ocean}/dt > dpCO₂^{atm}/dt DECLINING SINK

dpCO₂^{s.ocean}/dt < dpCO₂^{atm}/dt INCREASING SINK

Mostly from Takahashi pCO_2 database, model in S. Ocean

LeQuéré et al. 2010

North Atlantic: VOS datasets, linear trend 1990-2006

Data of Corbiere et al. 2007 Shuster & Watson 2007 Bates 2007 Olsen et al. 2004 Santana-Casiano et al. 2007

Schuster et al. 2009

Generally consistent <45N, but inconsistent >45N

Modeled subpolar has increasing sink

Modeled, 1992-2006

Modeled mechanism for increased sink Change in pCO_2 components 1992 to 2006 $pCO_2 \approx pCO_2$ -ALK + pCO_2 -DIC + pCO_2 -SST

Ullman et al. 2009

North Atlantic pCO₂ trends from in-situ observations

Takahashi et al. 2010

Metzl et al. 2009

McKinley et al. 2011

$\frac{Objectives}{With in situ pCO_2} data, discern:$

• Timescales: variability vs. trends

• Mechanisms: Warming vs. carbon uptake

• Spatial scale: Gyre-size "biomes"

$\frac{Objectives}{with in situ pCO_2} data, discern:$

• Timescales: variability vs. trends

• Mechanisms: Warming vs. carbon uptake

• Spatial scale: Gyre-size "biomes"

On what timescale does the ocean follow the atmosphere?

$\frac{Objectives}{With in situ pCO_2} data, discern:$

• Timescales: variability vs. trends

• Mechanisms: Warming vs. carbon uptake

• Spatial scale: Gyre-size "biomes"

Decompose pCO₂ into temperature driven component (pCO₂-T) and biological/chemical component (pCO₂-nonT)

$$pCO_2 - T = \overline{pCO_2} * \exp(0.0423 * (SST - \overline{SST}))$$
$$pCO_2 - nonT = pCO_2 * \exp(0.0423 * (\overline{SST} - SST))$$

Takahashi et al. 2002

Trend mechanisms

Biogeochemical change only

Consistent with carbon uptake

Trend mechanisms

If warming contributes, less carbon uptake required for equilibration with atmosphere

Mechanistic approach allows more nuanced understanding

$\frac{Objectives}{With in situ pCO_2} data, discern:$

• Timescales: variability vs. trends

• Mechanisms: Warming vs. carbon uptake

• Spatial scale: Gyre-size "biomes"

Biomes

Seasonally Stratified Subpolar (SP-SS)

Seasonally Stratified Subtropical (ST-SS)

Permanently Stratified Subtropical (ST-PS) Gyre-scale biogeographic regions (Sarmiento et al (2004)
 Selection criteria: observed climatological SST, max MLD, and chlorophyll-a

Results

dpCO₂^{s.ocean}/dt > dpCO₂^{atm}/dt OVER-EQUILIBRATION

dpCO₂^{s.ocean}/dt <

dpCO₂^{atm}/dt

UNDER-EQUILIBRATION

Trend in pCO₂^{ocean} compared to pCO₂^{atm}

Multi-decadal: 1981-2009

 $dpCO_2^{ocn}/dt < dpCO_2^{atm}/dt$ $dpCO_2^{ocn}/dt \sim dpCO_2^{atm}/dt$ $dpCO_2^{ocn}/dt > dpCO_2^{atm}/dt$

under-equilibration equilibration

over-equilibration

Trend in pCO₂^{ocean} compared to pCO₂^{atm}

Decadal: 1993-2005

under-equilibration equilibration

over-equilibration

On what timescale does the ocean follow the atmosphere?

Evaluate transition from decadal to multidecadal

Considering varying timescales Dotted = warming influence significant

SUBPOLAR BIOME (SP-SS)

multi-decadal

SUBTROPICAL PERMANENTLY STRATIFIED (ST-PS)

More than two decades for carbon accumulation to dominate $pCO_2^{s.ocean}$ trend

Warming beginning to reduce subtropical N. Atlantic carbon sink

Modeling assessment of global CO_2 sink impacts due to climate change: 1981-2007 = -0.20 PgC/decade

Mechanism	Sink impact	Regional notes
Warming	-20%	50% in North Atlantic alone
Wind change	-63%	>80% in Tropical Pacific>30% in S. OceanCompensation elsewhere
Heat, Freshwater flux	+15%	In Northern Hemisphere
Nonlinear	-32%	>65% in Tropics

LeQuéré et al. 2010

Global Analysis

Fay and McKinley, submitted

North Atlantic Subpolar, updated has more warming; Grid extended to 1981-98 to 2001-10

200

1981							\searrow			
1982										
1983							$\left \right\rangle $			
1984					//	//	\nearrow			
1985		/	//	\geq		\nearrow	\sum	//		
1986			\mathbb{N}	//	${\nearrow}$		$\langle \rangle \langle \rangle$			25 yrs
1987			\sim	\sum	\sim	/				
1988										
1989				\geq	\geq					
1990										
1991										20 yrs
1992										
1993										
1994				\geq	$^{\prime\prime}$					
1995										
1996										15 vrs
1997										
1998							10 yrs			
	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010

North Atlantic Subpolar; with NAO and AMV grids

Conclusions

- Decadal variability is dominant signal in pCO₂ trends for at least 2 decades
- Equilibration or under-equilibration appears for longest available timescales (30 years)
- Warming reduces CO₂ sink, esp. in N. Atlantic
 - AMV contributes
 - Consistent with predicted climate change impacts

Methodology detail

 Subtract background mean to address spatial aliasing
 Average to biome timeseries

Resulting pCO₂ timeseries, subpolar N. Atlantic

How representative are these trends of the biome?

Model Confirmation

Sampled, analyzed model captures trends from all model output at 1σ level

Indicates that sampling and analysis technique are representative