Surface Estimates of the Atlantic Overturning in Density Space in an Eddy-Permitting Ocean Model

Jeremy Grist¹, Simon Josey¹ Robert Marsh²

¹National Oceanography Centre, UK ²University of Southampton, UK

Funded by Natural Environment Research Council, UK

Context

Marsh (2000) described (but did not test) a method that might allow 'the meridional stream function to be largely inferred from surface fluxes alone".

We've examined this possibility using output from:

- 1) Three IPCC coupled climate models. (100-400 years of GFDL2.1, BCM, HadCM3) (Grist et al. 2009; Josey et al. 2009).
- 2) Eddy-permitting (1/4 °) ocean only model (78 years of ORCA-025, 'NEMO') (Grist et al., 2012).

Marsh (2000), Walin (1982)

Net diapycnal volume flux, G (Θ, ρ) and Diapycnal density fluxes D (Θ, ρ) in an idealized North Atlantic.

Marsh (2000), Walin (1982)

Net diapycnal volume flux, G (Θ, ρ) and Diapycnal density fluxes D (Θ, ρ) in an idealized North Atlantic.

$$G(\Theta, \rho) = F(\Theta, \rho) - \frac{\partial D_{diff}(\Theta, \rho)}{\partial \rho} + C(\Theta, \rho)$$
$$F(\Theta, \rho) = \frac{\partial D_{in}(\Theta, \rho)}{\partial \rho}$$

Marsh (2000), Walin (1982)

Net diapycnal volume flux, G (Θ, ρ) and Diapycnal density fluxes D (Θ, ρ) in an idealized North Atlantic.

$$G(\Theta, \rho) = F(\Theta, \rho) - \frac{\partial D_{diff}(\Theta, \rho)}{\partial \rho} + C(\Theta, \rho)$$
$$F(\Theta, \rho) = \frac{\partial D_{in}(\Theta, \rho)}{\partial \rho}$$

Assuming incompressibility and steady state of water masses, the meridional streamfunction then:

 $\psi(\Theta,\rho) = G(\Theta,\rho)$

Marsh (2000), Walin (1982)

Net diapycnal volume flux, G (Θ, ρ) and Diapycnal density fluxes D (Θ, ρ) in an idealized North Atlantic.

$$G(\Theta, \rho) = F(\Theta, \rho) - \frac{\partial D_{in}(\Theta, \rho)}{\partial \rho} + C_{in}(\Theta, \rho)$$
$$F(\Theta, \rho) = \frac{\partial D_{in}(\Theta, \rho)}{\partial \rho}$$

Assuming incompressibility and steady state of water masses, the meridional streamfunction then:

 $\psi(\Theta, \rho) = G(\Theta, \rho)$

'Surface-Forced' Streamfunction (Sv)

Correlations Maximum 'Surface-Forced' (SFI) & Overturning Stream functions

Correlation of AMOC (48N) vs Surface Forced Index (SFI)

- •Year on year SFI ≠ AMOC
- But significant correlation when SFI leads by a few years in all models.
- Averaging the SFI over preceding years may give a useful estimate of AMOC variability.

SFI & AMOC in the Coupled Models

15-44% of interannual variability

AMOC in 1/4° NEMO Model

We compared our estimate to AMOC (z,θ)

AMOC in 1/4° NEMO Model

The theory suggests compare With AMOC (σ or ρ , θ). (Density as a vertical coordinate)

AMOC in 1/4° NEMO Model

We compared our estimate to AMOC (z, θ)

The theory suggests compare With AMOC (σ or ρ , θ). (Density as a vertical coordinate)

Our surface forced streamfunction shows similarities to AMOC (σ , θ).

Fraction AMOC explained By Surface Fluxes

Fraction AMOC explained By Surface Fluxes

Fraction AMOC Explained By Surface Fluxes

Fraction AMOC Explained By Surface Fluxes

Fraction AMOC Explained By Surface Fluxes

Theory

Theory + Surface Observations

40

20

-20

-40

-60 -100

Updated from Grist et al. (2009)

Updated from Grist et al. (2009)

Summary

- In ¹⁄₄° NEMO ocean model, the water mass transformation method can be used to estimate AMOC variability.
- In sub-polar regions the method explains much more variability in AMOC (σ_0) than AMOC (z).
- The surface density fluxes capture much of the decadal signal while the additional calculation of Ekman transport allows the higher frequency variability to be captured
- The method shows greatest potential between 33°N and 54°N where 70-84% of the AMOC (σ_0) variance is explained.
- As the method relies only on surface observations, estimate of AMOC variability can be made for the reanalysis era.
- We seek to determine the spread in time series resulting from the different reanalysis / salinity products & reconcile the surface forced signal with other mid-latitude AMOC estimates.

MOC vs SFOC in Coupled Climate Models

4. Influence of Surface Fluxes on AMOC Variability

Grist, Josey, Marsh (JGR-Oceans, under review, 2012)

Fraction AMOC explained By Surface Fluxes

Updated from Grist et al. (2009)