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* METHOD:

Identify key forcings & mechanisms associated with historical
(1948-2007) N. Atlantic decadal variability in CORE experiments (and
nature). Use this to guide coupled model analysis & decadal
prediction development.

CCSM4 coupled ocean-ice simulation driven by CORE historical forcing
fields (“CORE-IA”) & perturbed forcing sensitivity experiments.
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* CORE-IA is skillful at reproducing observed AMV
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of AMOC-related heat transport
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* CORE-IA is skillful at reproducing observed AMV

* AMOC 1%t EOF time series leads AMV, suggesting prominent role
of AMOC-related heat transport

* Yeager et al. (J. Climate 2012) show that gyre heat transport
convergence was a dominant driver of observed SPG HC’/SST".
AMOC and SPG barotropic W covary on decadal timescales.

* Skillful decadal predictions of SPG SST attributable to accurate
initialization of low-frequency variations in large-scale circulation.



AMYV in CORE-IA simulation

ci=0.1degC

Hurrell SST, 35.0%

15t EOF of SST

CORE-IA, 31
I

7%

60N —

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

* NAO-related forcing would appear to be key, consistent with
Marshall et al (2001), Eden & Willebrand (2001), Boning et al
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(2006), Lozier et al. (2008), Lohmann et al (2008, 2009), Robson et
al (2008), ...

but what NAO-related forcing components in particular give rise to

CORE-IA slow variations in large-scale circulation? Is the trend in SAM
AMOC PC1 playing a role?
(48%)



1.

2.

CORE-IA hindcast (“CONTROL”)

interannually-varying 1948-2009

B “normal” year repeated

Buoyancy-forced variability (“BUOY”)

. =t(Au *Caveats:

as (Au) Aul = [u, -
AB =0, -
Momentum-forced variability (“MOM”) Aq =g -
Qas = Qs+ QL+ QE(lAullAq) + QH(lAu IIAe) QL= QLdn +

F..=P+E(Au,Aq) +R

* Builds on the work of Eden & Willebrand (2001), Boning et al (2006), Robson et al (2011)
* Designed specifically to shed light on variability in CORE experiments (active ice, weak
salinity restoring, bulk flux forcing) & makes use of normal year forcing.
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What is the impact of Southern Ocean wind variability?

* Toggweiler and Samuels, 1995, Deep Sea Res |.
» de Boer et al, 2010, JPO.
» Shakespeare and Hogg, 2012, JPO, in press.
* Nikurashin and Vallis, 2012, JPO, in press.
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What is the impact of Southern Ocean wind variability?

* Momentum-forced variability over Southern
Ocean, “MOM(SO)”:
Q,, = Qs+ Q + Q(|Au],Aq) + Q| Au],A6)
F..=P+E(|Au],Aq) +R
T = T(Au), north of 35°S
, south of 35°S
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* Trend in 20t century wind stress over Southern

Ocean contributes negligibly to AMOC variability
compared to other (N. Atlantic) forcings
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What is the impact of NAO winds on
turbulent buoyancy forcing?

* Buoyancy-forced variability, without wind effects,
“BUQY(nowind)”:
| Au| | Au|
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* minimal effect =2 low-frequency AMOC
variability is not directly related to wind forcing
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What are the relative roles of thermal vs
haline buoyancy forcing?

» Temperature-forced variability (“BUOY_T")

F..=P+E(|Au],Aq) +R
T, = T(Au)
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* Salinity-forced variability (“BUOY_S”") > BIOV T
Q,, = Q,+ Q, + Qg(|Au],Aq) + Qy(]Au],A6)
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T, = T(Au)

* Both heat and freshwater forcing are important.
Freshwater forcing contributes particularly to low
frequency AMOC variability.

Latitude

d. BUOY_T+BUOY_S

Latitude




What is the relative role of Lab Sea buoyancy forcing?

MLD (CONTROL)
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Lab Sea Box, open-ocean
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What is the relative role of Lab Sea buoyancy forcing?
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What is the relative role of Lab Sea buoyancy forcing?

Lab Sea Box, open-ocean
March anomalies (CONTROL)
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What is the relative role of Lab Sea
buoyancy forcing?

* Latent+Sensible-forced variability, “BUOY(Q.+Q,,)":
- Qs + QL
=P+ + R
T, = T(Au)
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(interannually-varying forcing in Lab Sea box only)
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* |atent+sensible flux variability in Lab Sea
explains almost all low-frequency AMOC
variability.
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Conclusions

COREIll-forced POP hindcast suggests that SPG heat content change of late 20t C was
driven in large part by correlated decadal variations in strength of AMOC and subpolar
gyre.

These large-scale, slow circulation changes were buoyancy-driven, as was most of the near-
surface flow variability throughout SPG (including NAC). Southern Ocean winds played a
minimal role.

Heat and freshwater fluxes contributed about equally to AMOC decadal variability between
1948-2007.

Decadal AMOC variations are explained almost entirely by anomalous (latent+sensible)
buoyancy loss in the Labrador Sea. Anomalous convection generates AMOC anomalies
which propagate southward at latitudinally-dependent speeds.

The low-frequency AMOC variability between 1948-2007 can ultimately be traced to slow
variations in atmospheric surface temperature/humidity in Lab Sea. Improved AMOC
prediction may result from improved representation of the processes which set surface
temperature/humidity in this key region.




