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Scientific Goal Theoretical Background [Bishop et al. 2017]

Aim of this study is to assess the role of model resolution in the
representation of air-sea incteractions over the eddy-rich Gulf Stream region,
through an analysis of the lead-lag SST/turbulent heat fluxes (THF) covariance
patterns, following the methodology outlined in Bishop et al. (2017).
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For the analysis, a multi-model
ensemble of 100-yr present climate
(control-1950) simulations have
been used, performed at standard
(LR) and high resolution (HR)
following the HighresMIP protocol
(Haarsma et al.,, 2016). Steady
forcings representative of the
present-day (1950) climate are
used.

HighResMIP: Monthly mean SST
and turbulent surface heat fluxes
(THF; sum of latent and sensible
heat fluxes).

Observations: monthly SST and
turbulent (latent and sensible) heat
flux (THF) from daily ¥4° J-OFURO3
dataset (Tomita et al. 2019).

HadGEM3-GC31-MM A: 100 O: 25

HadGEM3-GC31-HM A: 25 0: 25
ECMWE-IFS-LR A:60 O: 100
ECMWEF-IFS-HR A: 25 0: 25
CMCC-CM2-HR4 A: 100 0O:25
CMCC-CM2-VHR4 A: 25 0:25
EC-Earth3P : 100 0:100
EC-Earth3P-HR : 50 0:25
MPI-ESM-XR : 50 0:40
MPI-ESM-HR : 100 0:40
CNRM-CM6-1 : 250 O: 100

CNRM-CM6-1-HR : 50 0:25

As shown in Bishop et al. (2017; B17) a simple Energy Balance model (equations 1 and 2) of the
coupled ocean-atmosphere system reveals a distinctively different lead-lag covariance pattern
between SST (and SST tendency) and THF, depending on whether SST variability is dominated by
intrinsic atmospheric (synoptic weather) or oceanic (mesoscale eddies) variability.
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N,, N,: Stochastic forcings
arising from weather or
turbulent eddies in the
atmosphere and ocean

and

Atmosphere-driven: N,=0 — SST and THF are in quadrature and positive SHF (ocean cooling) is

associated with negative SST tendency.

Ocean-driven: N_=0 — THF is acting to damp the upper-ocean heat content anomalies generated

by interior ocean processes, with the flux directly
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Hasselmann (1976) paradigm: all stochastic
forcing arises in the atmosphere

Lead-lag SST (SST,)/THF correlations

A symmetry index is defined to

proportional to the SST itself.

Ocean-driven

b) Ocean—Driven

Energetic WBC

Corralaton

SS5T (SS5Ttend) Leads SST ($STiend) Lags
10 8 & 4 2 0 2 4 G 8 10
ags [month)

"

Alternative paradigm: intrinsic ocean variability
acting as the driver of surface variations

|IR(t=—-1)—R(t=+1)|/R(t=0)

Symmetry Index for SST-THF correlation
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Models reproduce the theoretically predicted (EBM) functional laws for SST (SST-tend.)-THF lead-

lag correlations over the Gulf Stream (WBC) and Subtropical Gyre (open ocean) with a different /
degree of realism: eddy-parametrised models deviate from the symmetric functional shape over
the GS. This bias is corrected in eddy-permitting models (e.g., see EC-Earth3).

LR models show a systematically lower degree of symmetry (i.e.,

larger Sl values) compared to HR

Lead-lag covariance patterns: SST tendency/THF covariance [K W m2 mon™!]

EC-Earth3P
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Models changing both oceanic AND atmospheric grid resolution

OBS (J-OFURO3)

—

Same ocean but different atmospheric resolution

 Increasing the ocean model resolution from “laminar” (100 km) to "turbulent” (eddy-permitting; 25 km) has a beneficial impact on the representation of the covariance patterns over GS.

The ocean model resolution plays a primary role: there is a critical threshold in the grid resolution placed around the eddy-
permitting (~25 Km) range leading to a step-change in the degree of realism of the simulated air-sea interaction.

Scale-dependency and Transition length

Space-depency of lead-
lag correlation over the
GS is inspected by
applying a box-car filter
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