

Motivation

Evaluating the model performance is ess understand the reliability of model-estimated feedbacks and climate sensitivity.

Climate Feedback: $\lambda = \frac{\Delta R - \Delta F}{\Delta T_S}$

However, there are several issues in the tr energy balance framework, including the effect.

Dessler et al. (2018): $\theta = \frac{\Delta R - \Delta F}{\Delta R}$ ΔT_A

 ΔT_A is the 500hPa tropical temperature.

The goal of this poster is to analyze the sl climate feedbacks in models using two fran especially focus on the impacts of unforced pattern effect.

Data

Observation:

- CERES EBAF Ed4.1 and ERA5 reanalysis
- March 2000 to October 2017

Model:

- o 26 models in CMIP6 pre-industrial control run
- Divided into several 18-year segments to be consistent with the observations
- \circ For each model, there are ~27 estimates of feedback from individual 18-year segments.
- Abrupt4xCO2 runs are also analyzed Climate feedback decomposition:
- Radiative kernels from Huang et al. (2017)
- Feedback is estimated by regressing TOA flux anomaly against global average surface temperature anomaly

Sources of uncertainty in model

Structure difference The differences in model parameterizations $(\pm 1.645$ *standard deviation)

Unforced pattern effect The pattern effect due to unforced variability (avg of model spread, excluding max and min values)

Combined uncertainty

(5% – 95% range of all 18-year feedbacks from all models)

The uncertainty in the observed feedbacks are smaller in the θ framework

The spread among the CMIP6 models is smaller in the θ framework \bullet

Model evaluation

- the 500-hPa temperature.
- Quantify the model performance by the differences between observed and modelled feedbacks:

$$\Gamma E = \sqrt{\sum_{i} (\lambda_{i,obs} - \lambda_{i,model})^2}$$
$$i = Planck, lapse rate, ARH.$$

$$i = Planck$$
, lapse rate, ΔRH , albedo, cloud

- CMIP6 ensemble average TE is 28% smaller in θ framework
- 70% of the models (18 of 26) have smaller TE value in θ framework

Concluding remarks

Check more information at:

• The spread among the 18-year segments of individual models is smaller in the θ framework, implying that the unforced variability has less impacts on

> • Unforced pattern effect is not negligible. Both uncertainties are important when comparing to observed short-term climate feedbacks

• The modified framework provides a more robust way of comparing short-term climate feedbacks, with both smaller structural differences and smaller unforced pattern effect.

Chao, L.-W., & Dessler, A. E. (2021). An Assessment of Climate Feedbacks in Observations and Climate Models Using Different Energy Balance Frameworks. Journal of *Climate*, 34(24), 9763-9773.

Acknowledgements

This work is supported by NSF grant AGS-1841308, AGS-1661861, NASA FINESST Grant 80NSSC20K1606, all to Texas A&M University.