North Pacific Decadal Predictability of Subsurface Temperature, Oxygen, and the Metabolic Index
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Black crosses : significantly increased ACC at p < 0.1;
Gray crosses: not significantly increased ACC from persistence

A. Spatial Distribution of Decadal Potential/Predictability of the Metabolic Index @, temperature,|and oxygen at 200-600 m

Reconstructlon Per5|stence Potentlal Predlctablllty of DPLE  Difference (DPLE - Persistence)

I. Motivation I11. Results & Discussions |Black crosses : significance level p < 0.1

* Global Earth System Models have demonstrated skill in predicting physical and
biological variables important to fish and fisheries on seasonal to decadal time
scales of significance to management [Tommasi et al., 2016; Park et al., 2019];
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with interannual forcing [Griffies et al., 2009; Large & Yeager, 2009].

The California Current (LME#03) has a decreased potential predictability

0.625

ACC/ACC Increase '

625F DPLE forccnct | : : : when lead time increase from 1-year to 5-year, but it increases again when
600l —— DPLEEmsembleMean . Ao - - 5 the lead time increase from 5-year to 10-year;
——  FOSI Reconstruction ‘ | | ; | 4
I T 1 B ; * The Metabolic Index in the California Current LME is decreasing during the
E 55.0 |- V"‘u“ 'U " \ . T 24 recent time series, suggesting an increased habitat constraints for fisheries.
E sk \p » SO L - » - : : | T ‘e T 0000 . _ . _ o
8 500 | @ ! ! ‘U | EBS GoA CC GoC PH EE?VH;S S]  KI SO WBS Al EBS GoA CC GoC PH E[Cj.wgss S]  KI SO WBS Al EBS GoA CC GoC PH EEISVH;S S]  KI SO WBS Al C. Relatlve Contrlbutlon to Predlctablllty Of¢fr0m T and 02
S e e B-n- . | 0 contams mterannual varlablllty of both T and O, , ,
Y AN SN S S SR S SN S NS S— 3 2 - . " o N S —— ——— —— o Figure 7. Potential
1950 1960 1970 1980 1990 2000 2010 2020 2030 5 ;- . . 006 © T AL e\ predictability (ACC)
Figure 2. Experimental design of the decadal prediction system. The drift- | E " ; " ué'j of the Metabolic
corrected O, time series in the California Current LME of both the FOSI |z : = ] toos S Index at the 200-600
) 5 549 5 54 o .
reconstruction (black line) and the CESM-DPLE forecasts (pink lines). The dark red N N o m layer using CESM-
lines represent ensemble mean. Only DPLE forecasts initialized in 1954, 1965, : . . . . . . . . cio| Mo DPLE when both
1977, 1991, and 2017 are plotted for visual clarity. 2 DR K 2 R 2 interannual
The MEtabOIiC Index ¢ -EI'?.S Gc')A C'C G(')C P'H EéS P‘S S'J K'[ S'() W;BS A:l -E!;BS G:)A CTC G(:C PTH ECS PTS STJ Ktl STO WBS Ajl 1-EBS G.A C.C G.C P.H E;S PTS S; Ktl S; W;SS /:l o Varlabll.ltles Of T and
LME» LME» LME» O2 are included

° The Metabolic |ndeX (¢) is defined as the ratio Of oxygen Supply (S) to an Figure 5. POtentiaI prEd|Ctab|||ty Of the MetabO“C Index in the 12 North PaCiﬁC LMEs at

y o (upper), when only
organism’s resting metabolic demand (D), which can be calibrated with | 200-600 m, for predlctlon skills in ACC (upper 3 panels) and RMSE (lower 3 panels).

interannual

physiological data of certain marine taxa [Deutsch et al., 2015]: T I 0 O T e W A it e % g variability of T is
RMSE =0.01; RMSE =0.01 RMSE er = 0.01; RMSEppy = 0.01 RMSE ¢, = 0.02; RMSEpp£ = 0.02 RMSE,,; = 0.02; RMSEppz = 0.02
S n o e oo = included (middle),
¢ — 5 —_ AOB y pOz - e B 0.39 : " ’ 0.39 { — DPLE Foreca s o n and When Only
a 0.38 - ‘ 038 .
where A, = a—S is the ratio of rate coefficients for gas exchange (S) and interannual
D 0.37 1 0.36 1

variability of O, is
included, all at the
lead time 1-5 years.

0.36 1 I

minimum metabolic rate (D), and n is the difference between scaling exponents | o« | \
applied to biomass B for oxygen supply and demand, E, is the temperature | o
sensitivity of hypoxia tolerance, and kg is the Boltzmann constant [Gillooly et |

a / 2 O O 1 ] 1960 1970 1980 1990 2000 2010 1960 1970 1980 1990 2000 2010 1960 1970 1980 1990 2000 2010 1970 1980 1990 2000 2010

Figure 6. The time series of the Metabolic Index in the California Current (LME#03) at
200-600 m, for the reconstruction (black lines), reconstruction persistence forecast
(blue lines), and the CESM-DPLE ensemble mean forecast (red lines), at the lead time of
1, 2, 4, 10 years (from left to right panels).
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* The Metabolic Index is calculated using the medium values of metabolic traits
database from Deutsch et al. [2015], the values of Ay and E, are 7.35 and 0.34,
respectively.

Prediction Skill Assessments

* Potential predictability is assessed by calculating the Anomaly Correlation 1V. Conclusions
Coefficient (ACC) and root mean square error (RMSE) between the CESM-DPLE |,
ensemble mean forecast and the FOSI reconstruction, both of which are on

* Potential predictability of the Metabolic Index at lead time of 1-5 years
shows almost the identical spatial pattern when interannual variability of T is
removed; but largely changed when interannual variability of O2 is removed.

The Metabolic Index is predictable on decadal time scales that enables quantifying habitat constraints arising from the metabolic dependence on temperature and
requirements for oxygen, as well as temperature and oxygen at the 200-600m layer;

annual time scale (annual averages over January-December). * The CESM-DPLE provides higher potential predictability in the three metrics at 200-600m over the simple, low-cost FOSI reconstruction persistence forecast, in the North
e Statistical significance of ACC is tested at the 90% confidence level via a Pacific with a lead time of 1-10 years;

Student’s t test, and statistical significance for the difference between two ACCs | * Spatial difference in potential predictability and its increase from persistence exists in the North Pacific as well as the 12 Large Marine Ecosystems;

is also tested at the 90% confidence level following Steiger [1980]. * Interannual variability of oxygen is the dominant role against that of temperature in contributing the potential predictability of the Metabolic Index over the North Pacific.
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