The varying Earth's radiative feedback connected to the ocean energy uptake: a theoretical perspective from conceptual frameworks

Diego Jiménez-de-la-Cuesta

The effect of the evolving warming pattern is a departure from a linearity in NT-diagrams. Radiative feedbacks are now time-varying.

The extended two-layer model used a perturbed coupling between the upper and deep ocean which provides the bending as in GCMSs.

The leading interpretation, however, considers it as part of the radiative response, considering it a patch for a broken model.

Problem: From a non-linear planetary energy budget this interpretation is lacking

\[N = (1 - \alpha)S(t) + G(t) - \varepsilon f(T_u) + \varepsilon \]

1. Albedo (\(\alpha \)), long-wave emissivity (\(\varepsilon \)) and the emission temperature scaling factor (\(f \)) depend on an oceanic hidden variable...
2. ...or are functions of the pattern but here we see the global effect

Solution: The total change in energy \(E \) has a component from a varying effective thermal capacity

\[E = CT_u; \quad \dot{E} = N + \dot{C}T_u \]

The changing ocean circulation:
- redistributes the ocean energy, changing the uptake.
- changes also the SSTs from below through deep water formation and upwelling. The radiative feedbacks respond to this change.
- Parts of this mechanism have been revealed in recent studies. Globally, it looks like a change in the effective thermal capacity.

Iironically, the traces are also in the extended two-layer model. Solving analytically the model, there is an explicit expression of the time-varying radiative feedback. The time-varying term is proportional to the ratio of the deep to the upper layer energy content

\[F_{\text{pat, dyn}} = C_u \frac{K}{|\lambda|} \tanh \left(\frac{K}{2} (t - t_0) + \arctanh(Z) \right) \]

where, the coefficients are functions of the thermal and radiative parameters.

The hyperbolic tangent factor strengthens the feedback prior to

\[t = t_0 + \frac{2}{K} \arctanh |Z| = t_{\text{rev}} \]

Afterwards, it weakens the feedback, leading to the bending and mimicking the change in ocean circulation.

Figure 1. NT-diagrams for three models with different pattern effects.

Figure 2. Timescale \(t_{\text{rev}} \) in the CMIP ensembles.

Figure 3. Behaviour of the radiative feedback in the CMIP ensemble.
