The varying Earth's radiative feedback connected to the ocean energy uptake: a theoretical perspective from conceptual frameworks

Figure 1. NT-diagrams for three models with different pattern effects.

<u>The leading interpretation, however, considers it as part of the radiative</u> response, considering it a patch for a broken model. **<u>Problem</u>:** From a non-linear planetary energy budget this interpretation is lacking $N = (1 - \alpha)S(t) + G(t) - \epsilon\sigma(fT_{\rm u})^4$

1. Albedo (α), long-wave emissivity (ϵ) and the emission temperature scaling factor (f) depend on an oceanic hidden variable... 2. ...or are functions of the pattern but here we see the global effect Solution: The total change in energy E has a component from a varying <u>effective thermal capacity</u>

Diego Jiménez-de-la-Cuesta

The effect of the evolving warming pattern is a departure from a linearity in NT-diagrams. Radiative feedbacks are now time-varying.

The extended two-layer model used a perturbed coupling between the upper and deep ocean which provides the bending as in GCMs^{1,2}

 $N = F + \lambda \Delta T_{\rm u} + (H - H')$ $H - H' = (1 - \hat{\varepsilon})\gamma(\Delta T_{\rm u} - \Delta T_{\rm d})$

2. Geoffroy, O., D. Saint-Martin, G. Bellon, A. Voldoire, D. J. L.Olivié, and S. Tytéca, 2013a: Transient Climate Response in a Two-Layer Energy-Balance Model. Part II: Representation of the Efficacy of Deep-Ocean

4. Lin, Y.-J., Y.-T. Hwang, J. Lu, F. Liu, and B. E. J. Rose, 2021: The Dominant Contribution of Southern Ocean Heat Uptake to Time-Evolving Radiative Feedback in CESM. Geophys. Res. Lett., 48 (9), e2021GL093 302,

The changing ocean circulation:

- redistributes the ocean energy, changing the uptake.
- changes also the SSTs from below through deep water formation and upwelling. The radiative feedbacks respond to this change.

• Parts of this mechanism have been revealed in recent studies^{3,4,5}. Globally, it looks like a change in the effective thermal capacity. Ironically, the traces are also in the extended two-layer model. Solving analytically the model, there is an explicit expression of the radiative feedback. The time-varying term is time-varying proportional to the ratio of the deep to the upper layer energy content $\left|\frac{\kappa}{2}(t-t_0) + \operatorname{arctanh}(Z)\right|$

$$\mathcal{F}_{\text{pat, dyn}} = C_{\text{u}} \frac{\kappa}{|\lambda|} \tanh$$

where, the coefficients are functions of the thermal and radiative parameters.

<u>The hyperbolic tangent factor</u> strengthens the feedback prior to $t = t_0 + \frac{2}{\kappa} \operatorname{arctanh} |Z| = t_{rev}$. Afterwards, it weakens the feedback, leading to the bending and mimicking the change in ocean circulation.

MAX-PLANCK-INSTITU

FÜR METEOROL

^{1.} Winton, M., K. Takahashi, and I. M. Held, 2010: Importance of Ocean Heat Uptake Efficacy to Transient Climate Change.J. Climate, 23 (9), 2333–2344, https://doi.org/10.1175/2009JCLI3139.1.

Heat Uptake and Validation for CMIP5 AOGCMs. J. Climate, 26 (6), 1859–1876, https://doi.org/10.1175/JCLI-D-12-00196.1 3. Newsom, E., L. Zanna, S. Khatiwala, and J. M. Gregory, 2020: The Influence of Warming Patterns on Passive Ocean Heat Uptake. Geophys. Res. Lett., 47 (18), e2020GL088 429, https://doi.org/10.1029/2020GL088429

https://doi.org/10.1029/2021GL093302

^{5.} Hu, S., S.-P. Xie, and S. M. Kang, 2021: Global Warming Pattern Formation: The Role of Ocean Heat Uptake. J. Climate, 35 (6), 1885–1899, https://doi.org/10.1175/JCLI-D-21-0317.1.