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Predictable North Atlantic Variability

e Predict SST anomaly at 1-5 year lead time at a point in the
North Atlantic Ocean (53N, 35W)
e Examine 20% most confident predictions of positive anomaly

Composite OHC to 300 m at input
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Predicting SST evolution Key Points

e Seasurface temperature (SST) predictability on decadal (2-10 year)
timescales can arise from both external forcing and internal
variability.

e Artificial neural networks (ANNSs) learn to predict
SST evolution on decadal timescales

e Recent studies suggest that predictability on decadal timescales can be : : e Composite of OHC input for 3 3
influenced by the initial state of the system i.e. some initial states are o ANNs learn more predictable oceanic states by confident predictions shows 05 2
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patterns the subtropical Atlantic 05 5

e Aim to identify oceanic patterns that are associated with more e Composite SST 1-5 years later
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e.g. Borchert et. al 2018

predictable SSTs in the North Pacific and North Atlantic oceans. e More predictable initial states coincide with shows heat transport into
specific combinations of patterns of decadal North Atlantic Sub-polar Gyre
e Using output from the CESM2 pre-industrial control simulation for Vzriability (e.g. Atlantic I\E:ulti Decadal Variability 06 8
CMIPé6 to examine predictability due to internal variability. S = e ’ o Anomalously northward heat °
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Using an artificial neural network (ANN) Sub-polar Gyre — agrees with
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to predict SSTs with uncertainty Leveraging uncertainty predictions to

We train neural networks to predict SST anomaly 1-5 years in the future What about modes of decadal-multidecadal variability?

identify predictable SST patterns
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