A new conceptual model of global ocean heat uptake and transient climate response Jonathan Gregory et al.

See end of poster for list of authors
Two-layer model

Net downward TOA flux
MT2 model

$$
=N=F-\alpha T
$$

= Heat flux into ocean

> Upper ocean T of small heat capacity

Ocean heat uptake efficiency OHUE $\equiv N \div T$
$\leftarrow N=\gamma T$
$\Rightarrow N$ is small if T is small, and N correlates with γ
Deep ocean of large heat capacity
γ is AOGCM-specific.

Neither is true in CMIP.

$$
N=q T+\mu F \Rightarrow
$$

CMIP T anticorrelates with μ,

so OHUE $=q+\mu F / T$ is larger with stronger AMOC. μ correlates with AMOC.

Interpretation and implications of the MT2 model

Correlation of $\Delta \mathrm{SST}$ with global-mean N_{T}

$\begin{array}{llllllll}-0.8 & -0.6 & -0.4 & -0.2 & 0.2 & 0.4 & 0.6 & 0.8\end{array}$
N_{T} occurs at low latitude

Correlation of passive heat with AMOC

AOGCMs with stronger AMOC have smaller T because α is larger (EffCS smaller) and heat is removed more efficiently from the surface (but not by the AMOC).

$$
F-\alpha T=N=q T+\mu F \Rightarrow T=F(1-\mu) /(\alpha+q)
$$

$\Rightarrow T$ determined almost entirely by $\alpha \Rightarrow T$ correlates with EffCS (Grose et al.)

MT2 model for time-dependent ocean heat uptake efficiency

$N_{M}(t)=\mu F(t)$, where is constant in time and AOGCM-specific, $\mu=s_{0}\left(M-M_{0}\right)$, $S_{0}=0.5 \% \mathrm{~Sv}^{-1}, M_{0}=-10.2 \mathrm{~Sv}$. $N_{T}(t)=q(t) T(t)$ is described by the twolayer model, with AOGCM-independent heat capacities and $\gamma=0.47 \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-1}$. OHUE N/T $=(\mu \alpha+q) /(1-\mu)$ decreases in time because α and q do.

MT2 reproduces OHUE well in AOGCM mean (black, red and blue) and individual AOGCMs (green); MT2T is better (grey, AOGCM-specific deep-layer thickness). Authors: Jonathan Gregory, Jonah Bloch-Johnson, Matthew Couldrey, Eleftheria Exarchou, Stephen Griffies, Till Kuhlbrodt, Oleg Saenko, Tatsuo Suzuki, Quran Wu, Laure Zanna.

