

Interpretation and implications of the MT2 model

AOGCMs with stronger AMOC have smaller T because α is larger (EffCS smaller) and heat is removed more efficiently from the surface (but **not by** the AMOC).

 $F - \alpha T = N = qT + \mu F \Rightarrow T = F(1 - \mu)/(\alpha + q)$

 \Rightarrow *T* determined almost entirely by $\alpha \Rightarrow T$ correlates with EffCS (Grose *et al.*)

MT2 model for time-dependent ocean heat uptake efficiency

 $N_{M}(t) = \mu F(t)$, where is constant in time and AOGCM-specific, $\mu = s_{0}(M - M_{0})$, $s_{0} = 0.5\%$ Sv⁻¹, $M_{0} = -10.2$ Sv. $N_{T}(t) = q(t)$ T(t) is described by the twolayer model, with AOGCM-independent heat capacities and $\gamma = 0.47$ W m⁻² K⁻¹. OHUE N/T = $(\mu \alpha + q)/(1 - \mu)$ decreases in time because α and q do.

MT2 reproduces OHUE well in AOGCM mean (black, red and blue) and individual AOGCMs (green); MT2T is better (grey, AOGCM-specific deep-layer thickness). *Authors: Jonathan Gregory, Jonah Bloch-Johnson, Matthew Couldrey, Eleftheria Exarchou, Stephen Griffies, Till Kuhlbrodt, Oleg Saenko, Tatsuo Suzuki, Quran Wu, Laure Zanna.*