Hydroclimate response patterns of TOA radiation cover trends. SW and in regional temperature radiation trends.

- Divergent tropical SST trends dictate global temperature and radiation patterns through cloud forcing.
- Regional precipitation trends show varying degrees of sensitivity to either Niño 3.4 trends or the general forced response (GHGs, aerosols).
- CAM6 simulations with synthetic but realistic SSTs generated by a Linear Inverse Model (LIM-LE) trained on observations (ERSSTv5).

Approach:
- We can study the pattern effect using AMIP simulations with observed SSTs, but this represents just one of many possible historical SST realizations.
- Large ensembles (LEs) with coupled models offer many realizations but can contain SST biases in trend and variability.

Results:
- We chose end members in terms of long-term trends in Nino3.4 from the LIM-LE and conduct 10-member CAM6 ensembles with a TOGA setup.
- Divergent tropical SST trends dictate global temperature and radiation patterns through cloud forcing.
- Regional precipitation trends show varying degrees of sensitivity to either Niño 3.4 trends or the general forced response (GHGs, aerosols).

Synopsis

Issue:
- We can study the pattern effect using AMIP simulations with observed SSTs, but this represents just one of many possible historical SST realizations.
- Large ensembles (LEs) with coupled models offer many realizations but can contain SST biases in trend and variability.

Approach:
- CAM6 simulations with synthetic but realistic SSTs generated by a Linear Inverse Model (LIM-LE) trained on observations (ERSSTv5).
- We chose end members in terms of long-term trends in Nino3.4 from the LIM-LE and conduct 10-member CAM6 ensembles with a TOGA setup.

Results:
- Divergent tropical SST trends dictate global temperature and radiation patterns through cloud forcing.
- Regional precipitation trends show varying degrees of sensitivity to either Niño 3.4 trends or the general forced response (GHGs, aerosols).

Temperature and radiation patterns

We ran 3 10-member CAM6-TOGA ensembles with:
1. La Niña-like trend
2. Observations (3)
3. El Niño-like trend

Hydroclimate response patterns

Despite the very different tropical SST forcing, all TOGA ensembles show a similar North Pacific SLP response, overall promoting a precipitation decline over the Western US (atmospheric circulation forced response not as sensitive to SST trend pattern?).

Benchmarking of synthetic SSTs

LIM tends to have smaller biases than CESM2 (and other models) and a more realistic ENSO.

Data / References / Seeking postdoc

Model output from all 3 TOGA ensembles is on Cheyenne – let us know if you would like to use it.

Kuo et al., in prep., on hydroclimate response pattern

We are looking for a 2-year postdoc to work on related topics (broadly: hydroclimate projections, model evaluation, emergent constraints). Get in touch with Flavio Lehner if interested.