Feedbacks, climate sensitivity and polar amplification insights from volcanic eruptions in model large ensembles

Andrew G. Pauling* and Cecilia M. Bitz
Department of Atmospheric Sciences, University of Washington, Seattle, USA
E-mail:apauling@uw.edu

Motivation
• Surface temperature response to large volcanic eruptions (Mt Pinatubo) is less polar amplified than the response to increased CO₂ [1].

CMIP6 Ensemble Mean

• We are interested in knowing why this is the case.
• We expect less polar amplification with smaller forcing at high latitudes [2].
• Due to the pattern effect, this means we should expect a smaller climate feedback parameter and climate sensitivity in response to volcanoes compared to GHGs [3].

CIESM Last Milenium Ensemble

• 13 ensemble members run with CESM1-CAM5 over the period 850 to 2005 with transient forcing [4].
• Many large volcanic eruptions. The largest (Samalas) was ~5× the size of Pinatubo.
• Large signal-to-noise ratio for analyzing feedbacks for short-term forcing.

Feedbacks

Surface Albedo Feedback

Lapse rate feedback

• Smaller Arctic surface albedo and lapse rate feedbacks due to volcanoes than to increased CO₂.
• Surface albedo also smaller in abrupt-0.5xCO₂ runs, indicates it is likely due to sea ice.
• Arctic lapse rate feedback difference due to different vertical structure of temperature change.

Conclusions

• Climate response to large volcanic eruptions less polar amplified than the response to GHGs due to differences in feedbacks.
• Response to volcanic eruptions not well-correlated to EffCS, in contrast to previous work, due to the much greater amount of model output now available.

References

Acknowledgments
BCF gratefully appreciates support from a Fulbright New Zealand Science and Innovation Award and the University of Washington’s Program on Climate Change Graduate Fellowship. We thank the modelling centres participating in CMIP6 for making their output available. We also thank the CESM CAM5 LENS project for making their model output available.

Climate Sensitivity

• Bender et al. (2010) found a relationship between “volcanic sensitivity” and climate sensitivity in CMIP3 models [5].
• Volcanic sensitivity defined as the ratio between the time-integrated surface temperature anomaly and the time-integrated TOA net SW anomaly after the eruption.

Figure 1. Volcanic sensitivity vs climate sensitivity from Bender et al. (2010).

If we randomly sample the same number of models and ensemble members as used by Bender et al. (2010), we find their result is due to statistical chance, because of their small number of models.

Figure 2. Same as above but for the CMIP6 models with at least 10 ensemble members in their historical simulations.

Figure 3. Histogram of regression slopes obtained by randomly sampling the same number of models and ensemble members as used by Bender et al. from the CMIP6 output. Black dashed line denotes the slope Bender et al. computed, and the orange line is a Student’s t-distribution fit to the data.

Conclusions

• Climate response to large volcanic eruptions less polar amplified than the response to GHGs due to differences in feedbacks.
• Response to volcanic eruptions not well-correlated to EffCS, in contrast to previous work, due to the much greater amount of model output now available.

References

Acknowledgments
BCF gratefully appreciates support from a Fulbright New Zealand Science and Innovation Award and the University of Washington’s Program on Climate Change Graduate Fellowship. We thank the modelling centres participating in CMIP6 for making their output available. We also thank the CESM CAM5 LENS project for making their model output available.