GFDL GEOPHYSICAL FLUID DYNAMICS LABORATORY

Influence of Forcing Strength on Estimates of ECS in GFDL CM4

D. Paynter, L.Wilcox, V. Ramaswamy

Concept/Motivation:

Fully Coupled runs of GFDL CM4 (CMIP6 model) in response to instantaneous and historical/future changes in greenhouse gases and/or aerosol emissions.
Aim is to understand the ECS obtained from a range of radiative forcing strengths with an emphasis on extending runs beyond the normal CMIP6 150-year period (up to 450 years), inspired by Longrunmip findings for CMIP3/CMIP5

Description of Fully Coupled Runs of GFDL CM4

Instantaneous

Run	Length	Description (all agents at 1850 level unless stated	Fixed SST
			Radiative
			Forcing (Wm ⁻²)
4xCO2	300 years	CO2 fixed at 4 times the pre-industrial level	8.23
2xCO2	450 years	CO2 fixed at 2 times the pre-industrial level	4.10
2014GHG	450 years	Well Mixed Greenhouse Gases (no O3) fixed at 2014 values	3.14
2014AER	200 years	200 years Anthropogenic Aerosol Emissions fixed at 2014 values	
1975AER	75AER 200 years Anthropogenic Aerosol Emissions fixed at 1975 values		-0.98

Historical/Scenario (3 ensemble members each)

Run	Length	Description		
ALL Historical+SSP245	1850-2100	All Forcing agents (Natural + Anthropogenic)		
AER Historical+SSP245	1850-2100	Anthropogenic Aerosol Changes		
GHG Historical+SSP245	1850-2100	Well Mixed Greenhouse Gas Changes		

Control

Run	Length	Description
Control	500 years	All Forcing agents fixed at 1850

Comparing feedbacks across all runs

- The feedback parameter in transient and instantaneous runs can be written as, N-F = λ T.
- The AMIP, Historical/SSP245 and first 20-30 years of 2014GHG, 2xCO2 & 4xCO2 all have a feedback parameter of -1.6Wm⁻²/K, implying a low ECS of ~2.6 K (red line Fig 2)
- Compared to this 2.6 K value....
- 2014GHG, 2xCO2 and 4xCO2 all have a higher ECS due to timedependence of SWCRE (Fig 3) independent of forcing strength (Fig 4)
- 2014GHG and 2xCO2 have a larger change in ECS with time because of the non-linear SWCLR in 4xCO2 (Fig 3)
- 4xCO2 and 2xCO2 have a large ECS than 2014GHG due to the LWCRE being dependent upon forcing strength(Fig 3)
- For 2xCO2 the feedback shift from -1.6Wm⁻²/K to -0.26 Wm⁻²/K is due to a 1 Wm⁻²/K in SWCRE, 0.2Wm⁻²/K in LWCRE 0.1Wm⁻²/K in LWCLR

Fig 3. As Figure 2, but for different radiative components

ECS estimated by linear fit

In CM4 estimated ECS shows a strong dependence upon strength of greenhouse gas forcing and time of linear fit

ECS (K)					
<u>Instantaneous</u>	<u>1-150</u>	<u>31-150</u>	<u>31-200</u>	<u>31-300</u>	<u>31-450</u>
<u>4xCO2</u>	<u>4.0</u>	<u>4.6</u>	<u>4.8</u>	<u>4.9</u>	
<u>2xCO2</u>	<u>3.7</u>	<u>4.5</u>	<u>5.1</u>	<u>6.1</u>	<u>6.1</u>
<u>2014GHG</u>	<u>3.2</u>	<u>4.0</u>	<u>4.1</u>	<u>5.0</u>	<u>5.4</u>
<u>2014AER</u>	<u>3.9</u>	<u>4.2</u>	<u>4.2</u>		
<u>1975AER</u>	<u>4.2</u>	<u>4.5</u>	<u>5.5</u>		
Transient	1850-2020		1850-2100		
HIS-ALL 2.1		2.8			
HIS-AER	<u>3.0</u>		3.0		
HIS-GHG	2.6		2.8]

Fig 1. Example of linear fit to 3 of the instantaneous runs normalized by 2xCO2 ERF. Note the very shallow gradients indictive of high ECS

Fig 5. Warming patten and feedback pattern of CM4

Distinct lack of SH warming in CM4 and negative SWCRE is important (fig 5) to explain the low ECS value from the historical period.

Email: David.Paynter@noaa.gov