Towards a role for anthropogenic aerosols in the pattern effect?(???) https://utexas.zoom.us/j/95342702844

Geeta G. Persad¹ (geeta.persad@jsg.utexas.edu) and Clara Deser² ¹The University of Texas at Austin, ²NCAR

Question: Does the evolving spatial pattern of aerosol emissions contribute to the time evolution of the pattern effect?

Historical-mean aerosol forcing produces more strongly amplifying feedbacks than historical GHG forcing, but model uncertainty is high (Marvel et al., 2016; Dong et al, 2021; Salvi et al., 2022). Aerosols' spatial pattern is not

static through time (Deser et al., 2020), which is obscured in the historical-mean.

How does this contribute to the historical time evolution of the feedback parameter?

 	 _				
				_ •	

Aerosol efficacy and feedbacks depend on emission spatial pattern

Persad and Caldeira (2018): five-fold range in forcing efficacy of aerosols emitted from different regions

Test climate influence of identical aerosol emissions from 8 different past, present, or projected major emitting regions

NCAR CESM1.4 (CAM5 + Slab Ocean)

- Control: 100 year repeating annual cycle simulation
 - Year 2000 conditions with anthropogenic aerosols at 1860 levels.
- 8 Perturbation Experiments: 100 year repeating annual cycle simulations
 - Identical total annual aerosol emissions in 8 regions

Divergent forcing and efficacy strength and spatial patterns in response to identical aerosol emissions from different regions

Persad and Caldeira (2018)

-0.17 ± 0.01

East Africa

 -0.06 ± 0.0^{-1}

 -0.02 ± 0.01

Partially explained by differing strength of remote

			2.0	
] [
Western Europe United States	India East Africa	Brazil South Africa		

What does that mean for efficacy of global aerosol emissions over time?

Test climate response to change in global spatial pattern of emissions with amount fixed

- Year 2000 total global BC+OC+SO2 distributed according to mid-20th and mid-21st century spatial patterns
- 100-year repeating annual cycle simulations in CAM5 coupled to slab ocean

Anthropogenic Sulfate Emissions (% of total in grid box)

Connecting aerosol spatial dependence to the pattern effect

References

Deser, C. et al. Journal of Climate 33, 7835-7858 (2020). Dong, Y., et al. J. Climate 32, 5471-5491 (2019). Dong, Y. et al. Geophysical Research Letters 48, e2021GL095778 (2021). Marvel, K. et al. Nature Clim Change 6, 386–389 (2016). Persad, G. G. & Caldeira, K. Nature Communications 9, 3289 (2018).

Salvi, P., et al. Geophysical Research Letters 49, e2022GL097766 (2022).

Acknowledgements

This work is partly supported by the National Science Foundation under grant CNH-L #1715557

Next steps:

- What is the contribution of aerosols to the time evolution of the feedback parameter in historical AOGCM simulations?
- What portion is SST pattern driven versus atmospheric forcing pattern driven?
- Does this provide any useful insight into the simulated vs. observed pattern effect mismatch in recent decades?
- What are the associated implications of expected future aerosol emission changes?