The Role of Clouds in Shaping Tropical Pacific Sea Surface Temperature Pattern in Response to Extratropical Forcing

Wei-Ting Hsiao*, Yen-Ting Hwang*, Yong-Jih Chen*, Sarah M. Kang*, Shang-Ping Xie*, Clara Deser*

*Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
*Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA
School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
* Scripps Institution of Oceanography, University of California, San Diego, CA, USA
National Center for Atmospheric Research, Boulder, CO, USA

Northern Hemispheric differential heating leads to La Niña-like responses on decadal timescales

Effects of delayed warming in the Southern Ocean (Hwang et al., 2017)

Idealized Warming in the Northern Atlantic and Pacific (Hsiao et al., under revision)

A feedback loop established by cloud feedbacks, surface wind adjustments & evaporation, and Hadley Cell adjustments:

Climatology control on connecting meridional and zonal sea surface temperature gradients

Evidence

(a) hNA-SOM cloud effect ΔT mean: 0.09 K

(b) CESM fully coupled (control run, 50 yrs)

(c) OISST - CERES (2000/03-2018/03)

Key points

- Spatial variations of tropical SST change are insensitive to the heating structures in the extratropics on decadal timescales.
- Clouds are essential in forming tropical SST response pattern through their coupling with circulation and surface energy fluxes.
- The climatological rainbow position in the tropics determines how clouds shape the tropical responses to extratropical forcing.

Reference