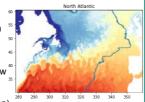
Temporal and spatial scale dependency of air-sea interactions over the Gulf Stream

Putrasahan, D. A.1, von Storch, J.-S.1, Jungclaus, J. H.1

¹Max Planck Institute for Meteorology, Hamburg, Germany

Email: dian.putrasahan@mpimet.mpg.de

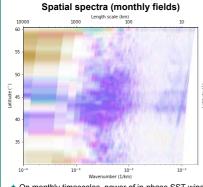
Motivation

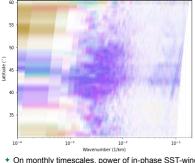

- ◆ Air-sea coupling via the vertical mixing mechanism (VMM) and the pressure adjustment mechanism (PAM) rely on interactions between SST, wind(stress) and sea level
- ◆ When models resolve mesoscale eddies, they are able to capture these coupled ocean-atmosphere processes that are otherwise not seen in lower resolution models.
- However, the timescales and spatial scales of these airsea interactions is less clear.
- What are the temporal and spatial scales of the following air-sea interactions?
 - 1) SST & surface wind speed
 - 2) VMM: downwind SST gradient & wind stress divergence
 - 3) PAM: Laplacian of SLP & wind stress convergence

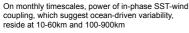
Model & methodology

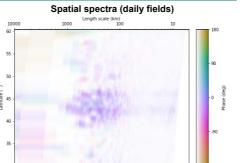
- ICON-A: ICOsahedral Nonhydrostatic Atmosphere *ICON-O: ICOsahedral Hydrostatic Ocean
- *~1 year global coupled 5-km ICON run [NextGEMS]
- *Daily surface variable output

Below: Figures below show phase spectra (hue) & squared coherence (saturation)

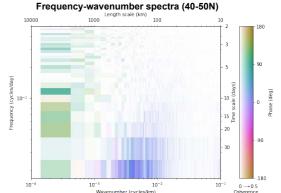


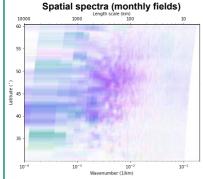

Conclusion

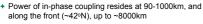

Air-sea coupling	Spatial scale	Timescale
SST-wind speed	100-900 km	>= 30 days
	> 500 km	all
Vertical mixing mechanism	10-60 km	all
	100-900 km	>= 10 days
Pressure adjustment mechanism	60-100 km	all
	>1000 km	all

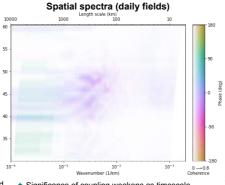

- ◆ In bold are spatial scales where main power of inphase air-sea coupling reside
- ◆ all indicates timescales between 2-60 days

SST & surface wind speed

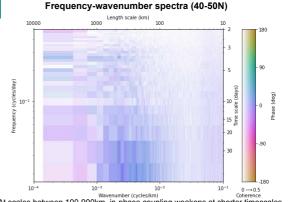


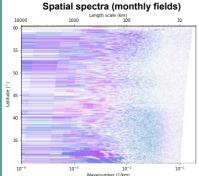


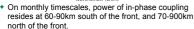

 Significance of SST-wind coupling diminishes when shortening timescales from monthly to daily

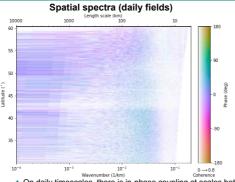


- Wavenumber (cycles/km) Coherence
 At scales between 100-900km, in-phase SST-wind coupling extinguishes on timescales less than 20 days
- At scales greater than 5000km, 90° phase-lag in SST-wind coupling suggests atmosphere-driven variability

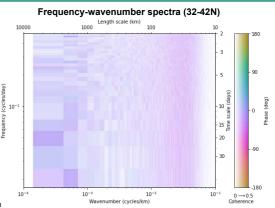

VMM: downwind SST gradient & wind stress divergence




 Significance of coupling weakens as timescale shortens from monthly to daily



- At scales between 100-900km, in-phase coupling weakens at shorter timescales
- In-phase coupling also seen at scales between 10-60km


PAM: Laplacian of SLP & wind stress convergence

- On daily timescales, there is in-phase coupling at scales between 60-100km and scales larger than 1000km south of the front
- North of the front, coupling at all scales larger than 70km

→ At scales between 60-100km, in-phase coupling at all timescales

