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Introduction : Management decisions for fisheries, protected species, and ecosystem health services require reliable short-term forecasts 6-9 months off US West coast. A variety of marine species are known to be
sensitive to sub-surface ocean conditions of the region such as, lower-trophic species -krill, higher trophic level species - Pacific hake, and bottom feeders - Dungennes crab. Monthly variation in temperature at depth (TD)
in the Northern California Current System (N-CCS) are related to a linear combination of factors, including North Pacific spice anomalies, and the PDO and ENSO climate indices (Ray et al., 2020). However, the
mechanisms for seasonal predictability of the N-CCS temperatures at depth are relatively less known. The temperatures during summer upwelling season is connected to the winter prior, however the strength of the

connection depends on whether its an ENSO winter or not. In this study we investigate the physical processes driving the seasonal and interannual variations in subsurface temperatures of the N-CCS through a subsurface
heat budget approach.

Data and method
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> Deep winter mixing explains at the most 25% of
the summer TD in N-CCS
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» Deep winter mixing leaves its footprint on TD close to the coast -
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winter subsurface for the following summer,
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Fig 7. Depth of bottom boundary of the intermediate layer, averaged
Fig 3. Lag correlation of N-CCS averaged SST anomaly N A n ) in ESN for ENSO-neutral and composite of El Nifio years
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N-CCS domain is shown in blue line.
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