We introduce a time-dependent climate feedback parameter \(\lambda(t) \) in Budyko’s (1969) linear relationship between surface temperature and outgoing long-wave radiation. Using two different methods, we derive an energy balance model (EBM) with \(\lambda(t) \) from energy conservation principles applied to the climate system. We show the EBM with a time-variable \(\lambda(t) \) from energy conservation principles applied to the climate system.

The theoretical development is as follows:

Method I: Partial derivatives

We assume \(\Delta R \) is small enough to be considered a linear perturbation. Following this, we develop the total derivative formula:

\[
\Delta R = \lambda_0 \Delta T_S + T_{S0} \Delta \lambda(t) - \lambda(t) \Delta T_S(t) + \lambda_0 \Delta T_S(t) + T_{S0} \Delta \lambda(t) - \lambda(t) \Delta T_S(t)
\]

\[
C \frac{d \Delta T_S}{dt} = \Delta F + T_{S0} \Delta \lambda(t) - \lambda(t) \Delta T_S(t)
\]

Method II: Perturbation theory

We assume a small deviation from steady state \(T_{S0} \) and \(\lambda_0 \) for simplicity. Ignoring the perturbed dynamical system, the total derivative follows:

\[
\Delta R = \lambda_0 \Delta T_S + T_{S0} \Delta \lambda(t) - \lambda(t) \Delta T_S(t) + \lambda_0 \Delta T_S(t) + T_{S0} \Delta \lambda(t) - \lambda(t) \Delta T_S(t)
\]

Perturbation theory states that a solution to this system can be found close to a solution of the unperturbed system.

\[
\frac{d \Delta T_S}{dt} = \frac{\Delta F}{C} + \frac{T_{S0} \Delta \lambda(t)}{C} - \frac{\lambda(t) \Delta T_S(t)}{C}
\]

We look for a 1st-order solution to the budget equation with \(T_{S0} = T_{S0} + \Delta T_S \) and \(\lambda = \lambda_0 + \lambda(t) \).

Theoretical conclusion

\[
\Delta R(t) = \Delta T_S(t) + T_{S0} \Delta \lambda(t) - \lambda(t) \Delta T_S(t)
\]

The surface temperature anomaly follows:

\[
\frac{d \Delta T_S}{dt} = \Delta F + T_{S0} \lambda_0 + \lambda(t) \Delta T_S(t)
\]

Validation and Consequences

- **Reproducing the surface temperature dynamics**
 - Numerical integration with 3-layer ocean
 - Global average surface temperature (K)
 - Temperature distance from ESM output (K)

- **Comparing time varying \(\lambda \) in abrupt CO\(_2\) increase experiments**
 - In the literature
 - Many definitions of time varying \(\lambda \) exist
 - \(\lambda \) is defined using \(T_{S0} \) and \(\lambda_0 \)

- **The constant temperature experiment**
 - Test if \(\Delta R = \lambda(t) \Delta T_S(t) \) is true using a constant temperature experiment, with varying \(\lambda(t) \) to include the pattern effect.

Results

- HadGEM3-ESM
- MRI-ESM2
- CESM2
- MIROC6
- IPSL-CM6A
- CanESM5

- The usual \(\Delta R \) leads to absurd values of \(\lambda(t) \) and requires the supplementary term \(\Delta \lambda(t) \)
