Numerical modeling and remote sensing of the land-ocean aquatic continuum

R. Savelli a, D. Menemenlis a, M. Simard a, D. Carroll b, C. Dupuy c, V. Le Fouest c

a Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
b Moss Landing Marine Laboratories, San José State University, Moss Landing, CA, USA
c Littoral, Environnement et Sociétés (LIENSs), La Rochelle Université, UMR 7266, CNRS-ULR, France

The land-ocean aquatic continuum (LOAC)

The LOAC is a mosaic of ecosystems composed by rivers, coastal wetlands (marshes, mangroves), estuaries, tidal flats and coastal waters. These ecosystems provide many ecological functions such as high productivity, carbon sequestration, species habitat and food production. Large amounts of nutrients and carbon transit through the LOAC to the open ocean. The productivity of coastal ecosystems composing the land-ocean interface? Biogeochemical exports from rivers and coastal ecosystems? The sensitivity of the carbon cycle of the global ocean to these exports?

Numerical models and remote sensing of the LOAC: the example of tidal flats

Tidal flats are under multiple influences (waves, tides, river discharge, meteorological conditions) from sub-hourly to interannual scale. On tidal flats, benthic microalgae or microphytobenthos (MPB) support a high primary production, especially at low tide.

1D modeling of the export of MPB biomass from tidal flats

Bed shear stress from waves and tides

Algorithm of MPB primary production (PP)

Simulated physical conditions

Multispectral image (NDVI)

Figure 3. Simulated resuspended MPB biomass along with satellite and in situ observations. From Savelli et al., 2019.

• High export in winter-fall due to high MPB biomass in the sediment and strong waves
• Annually, the export of MPB biomass = 43% of MPB primary production (PP)

Coupling a 3D model with space remote sensing

Algorithm

Model

Difference

Figure 4. MPB primary production. From Savelli et al., 2020.

• Significant advance in the estimation of PP over large productive tidal flats
• 1st coupling of modeling and remote sensing for PP mapping in the intertidal domain

Current project: what rivers and coastal wetlands bring into the global ocean?

Nutrient river runoff

ECCO-DARWIN model

Coastal wetlands exports

At the global scale and the regional scale (Gulf of Mexico and Mackenzie river delta):
• The first non-adhoc estimate of the contribution of rivers and coastal wetlands to the air-sea CO2 fluxes of the global ocean
• The phytoplankton activity and diversity in response to the biogeochemical exports

References


Current project: what rivers and coastal wetlands bring into the global ocean?

Nutrient river runoff

ECCO-DARWIN model

Coastal wetlands exports

At the global scale and the regional scale (Gulf of Mexico and Mackenzie river delta):
• The first non-adhoc estimate of the contribution of rivers and coastal wetlands to the air-sea CO2 fluxes of the global ocean
• The phytoplankton activity and diversity in response to the biogeochemical exports

References

