UNIVERSITY OF MIAMI ROSENSTIEL SCHOOL of MARINE & **ATMOSPHERIC SCIENCE**

MOTIVATION

- Large-scale tropical circulation, like the meridionallyoriented Hadley circulation and the zonally-oriented Walker circulation, is expected to weaken with warming
- Weakening is explained both thermodynamically and dynamically (Held and Soden, 2006; Knutson and Manabe, 1995)
- Trend in tropical circulation strength differs between reanalysis dataset and global climate models
- This work analyses trend in large-scale tropical circulation for near-past decades using the recent suite of models from the Coupled Model Intercomparison Project Phase 6 (CMIP6)

DATA AND METHODS

- CMIP6 amip + historical experiments (r1i1p1f1)
- RSS Merged 1-deg Monthly Mean Total Precipitable Water
- GISS Surface Temperature Analysis (GISTEMP v4)
- ECMWF Reanalysis v5 (ERA5)
- 3 strength indices:
 - upward component of mid-tropospheric vertical velocity
 - spatial variance of mid-tropospheric vertical velocity
- tropical mean convective mass flux
- **Convective mass flux estimation:**

$$M_{c}^{*} = rac{P}{q}$$
 P = precipitation
q = near-surface specific humidity

Fig.1: Decadal trend in near-surface temperature and ω_{500} for 1979-2014.

- global mean increase in temperature in both datasets
- La Niña like warming pattern in amip
- zonal gradient in ω_{500} trend along the equatorial Pacific with opposite signs in amip and historical simulations

Weakening of large-scale tropical circulation for different SST pattern in CMIP6 Sisam Shrestha (sisam.shrestha@rsmas.miami.edu), Brian Soden University of Miami, Rosenstiel School of Marine and Atmospheric Science

	$\Delta \omega_{500}^{+}$ / ω_{500}^{+}	$\Delta\sigma^2_{\omega_{500}}$ / $\sigma^2_{\omega_{500}}$	$\Delta M_c' / M_c'$
	-0.81 +/- 0.23	-0.95 +/- 1.13	-0.76 +/- 0.2
al	-0.91 +/- 0.11	-1.45 +/- 1.03	-1.34 +/- 0.09
	2.92 +/- 0.46	7.32 +/- 1.37	1.38 +/- 0.28
ation	_	_	-0.47 +/- 2.28