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Key Points
• Observed sea-surface temperature and sea-level pressure trends 
(1979-2020) are endmembers of what can be simulated by climate model 
large ensembles in many regions and indices

• The relative warm pool warming rate, which is important for climate sensi-
tivity (Dong et al. 2019) and not thought to be strongly influenced by mul-
ti-decadal variability (Wills et al. 2021), is particularly anomalous

• A signal-to-noise maximizing pattern analysis is used to isolate changes 
that occurred in observations that models are unable to reproduce

• Models have biases in their forced SST and SLP response, have too little multi-decad-
al variability, or a combination of both
• The observed warming pattern favors low cloud increases in the eastern Pacific that 
bias estimates of ECS based on observations low (assuming East Pacific and Southern 
Ocean warm eventually) (Armour, Proistosescu et al. in prep.)
• If the observed SST trend is a transient forced response and models have the correct 
equilibrium SST pattern, this implies a larger pattern effect in the real world than models
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Figure 1. Observed trends in annual-mean (a) SST and (b) SLP over 1979–2020 from ERSSTv5 (Huang et al., 2017) and the ERA5 reanalysis 
(Hersbach et al., 2020), respectively. Modeled trends in (c) SST and (d) SLP over 1979–2020, from the multi-model ensemble mean of historical 
simulations with 16 climate model LEs (Table 1). The SST trends in each simulation have been rescaled such that their global mean match-
es that in ERSSTv5. Observed trends in (e) SST and (f) SLP over 1979–2020 expressed in ensemble standard deviations away from the multi- 
model ensemble mean (i.e., the difference in trends between observations and the multi-model ensemble mean divided by the square root of the 
multi-model mean of the variance in trends within each large ensemble). Panels (c)-(f) are computed with the first 10 members of each large en-
semble such that each model is weighted equally. The ±2 standard deviation contour is shown with a black line.
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Figure 2. Comparison of observed trends in key SST and SLP 
indices with those in all en- semble members from 16 climate 
model LEs: (a) the Pacific SST gradient index used in ref. 
(Watanabe et al., 2021), defined as the difference between the 
western equatorial Pacific (110°E- 180°, 5°S-5°N) and eastern 
equatorial Pacific (180°-80°W, 5°S-5°N); (b) the ratio of Warm 
Pool SST warming to global-mean SST warming, which ref. 
(Dong et al., 2019) showed plays a critical role in global radia-
tive feedbacks; (c) SST in the southeast Pacific (140°W-70°W, 
62°S-47°S), which is shown in Fig. 1 to be a region of highly 
anomalous observed trends; (d) the Walker Cir- culation 
strength, defined as in (Vecchi et al., 2006) as the difference in 
SLP between the eastern equatorial Pacific (160°W-80°W, 
5°S-5°N) and western equatorial Pacific (80°E-160°E; 5°S - 
5°N); (e) and (f) the signal-to-noise maximizing pattern indices 
shown in Fig. 3. Violin plots from each model can be compared 
with multiple observational products, which are shown on the 
right-hand side. Ensemble averages for each index in each 
model are shown with a black circle.

Table 1. CMIP5 and CMIP6 Large Ensembles (LEs), 
the scenarios used, and the number of ensemble 
members (N, minimum of the two scenarios used).

Figure 3. First and second multi-field (SST and SLP) signal-to-noise maximizing patterns, from a signal-to-noise maximizing pattern analysis that 
maximizes the ratio of signal to noise, where signal is defined as the difference between observations and the multi-model ensemble mean and 
noise is defined as intra-model and inter-model differences. The orange timeseries show the amplitude of anomalies in these pattern in 
ERSSTv5/ERA5 relative to the multi-model ensemble mean and the black lines show the amplitude of anomalies in these pattern in the other 4 
combinations of SST and SLP observational products. The grey lines show the amplitude of these patterns in each of the 598 simulations from the 
multi-model ensemble. Normalization is such that the orange line has unit standard deviation and the SST/SLP pattern shows the anomalies asso-
ciated with a 1-standard-deviation anomaly in the associated index.

• Here, we set up a signal-to-noise maximizing analysis (Venzke et al. 1999; Schneider & 
Griffies 1999; Ting et al. 2009; Wills et al. 2020) to find a pattern of change that is most 
anomalous in observations relative to modeled variability and change (basically weighting 
the regions with large values in Fig. 1e/f, but putting this back into real units of °C and Pa.

• To do this, we make an ensemble where each member is observations minus one of the 
160 ensemble members (16 models x 10 members each). We then solve for the pattern 
that has the largest fraction of variance in the ensemble mean (i.e., observations - ensem-
ble mean) and thus the smallest fraction of variance explained by inter-ensemble member 
variations (including inter-model differences).

• The resulting patterns and timeseries show the amplitude of anomalies (from the mul-
ti-model ensemble mean) in observations (orange/black) and models (grey).

Patterns found in OBS but not models

Possible explanations for trend discrepancy between models and observations:
• The relative warming of the warm pool index (Fig. 2b) has limited multi-decadal variabili-
ty, because there are strong global radiative feedbacks in response to warming in this 
region (Dong et al. 2019; Wills et al. 2021). We think this indicates a forced response bias 
(in the 12 models that can’t reproduce observed trends), potentially related to a too-strong 
global feedback in response to warming in this region (e.g., a problem with deep convec-
tion parameterization).
• Reducing the global feedback for warm pool warming could also lead to more multi-dec-
adal variability in this region, as is suggested by proxies (Laepple and Huybers 2014)
• Likely a contribution to the trend discrepancy from biases in Southern Ocean trends, 
e.g., from biases in the westerly wind response to forcing, from missing Antarctic meltwa-
ter forcing, or from Southern Ocean multi-decadal variability. Notably, forcing CESM1 with 
observed winds over 40-80°S shows closer to observed trends (Armour et al., in prep).
• Biases in the tropical Pacific climatological SST, wind, and relative humidity can lead to 
biases in forced SST trends (Seager et al. 2019).
• Models with better representation of ENSO nonlinearity (e.g., GFDL-ESM2M) may better 
reproduce observed trends in the tropics (Kohyama et al. 2017; Karamperidou et al. 2017)

Open questions:
• Is the global feedback for warm pool warming too large in models? (GF-MIP)

• What are the relative contributions of forced response and internal variability to the pat-
terns in Figure 3?
• When will the East Pacific & Southern Ocean warming expected in equilibrium emerge?


