Latent heat flux coupling to the small-scale ocean

Pablo Fernández^{*1,} Sabrina Speich¹, Agostino N. Meroni², Matteo Borgnino², Fabien Desbiolles^{2,3} and Claudia Pasquero^{2,4}

¹ Département de Geosciences, École Normale Supérieure / Laboratoire de Météorologie Dynamique, 75005 Paris, France.
² Department of Earth and Environmental Sciences, University of Milano – Bicocca, Milan Italy.
³ CIMA Research Foundation, Savona Italy.
⁴ Institute of Atmospheric Sciences and Climate, Consiglio Nazionale delle Ricerche (ISAC – CNR), Turin, Italy.

*pablo.fernandez@lmd.ipsl.fr

Introduction

Our ability to compute latent heat flux (LHF) is subject to many shortcomings. Some of them are related to the lack of temperature and humidity observational coverage [1] while others rely on the uncertainties of the parameterisations used in models to compute LHF [2]. There is a large body of evidence which suggests that LHF is largely affected by mesoscale and submesoscale activity in numerous parts of the World Ocean ([3] and [4]) and that it feeds back into the atmosphere [5]. Hence, this study aims to improve our understanding of the interaction mechanisms between the upper ocean and the marine atmospheric boundary layer (MABL) focusing on sea-surface temperature (SST) and sea-surface salinity (SSS) by means of reanalysis, models, satellite and in-situ observations.

Motivation

Improving the representation of small-scale nonlinear ocean-atmosphere interactions in climate models by innovative joint observing and modelling approaches. **How?**

- Understanding driving mechanisms.
- Process parameterisation and modelling approaches.

Model

- Focus on the boreal winter season in the EUREC⁴A-OA region (5°-17°N, 60°-51°W).
- **Goal:** Study the impacts of small-scale SST features in LHF.
- We propose a first-order SST-based linear downscaling algorithm.

$$\psi_{HR} = \psi + \alpha_{\psi} \Delta SST$$

Angle brackets denote

area-weighted

means over

the EUREC⁴A-OA

$$\Delta SST = (SST_{MUR} - \langle SST_{MUR} \rangle) - (SST_X - \langle SST_X \rangle)$$

 $\alpha_{\psi} = \frac{\partial \psi'}{\partial SST}$

LHF sensitivity to SST

LHF sensitivity to SST quantifies the LHF variation per °C of SST increase. In the EUREC⁴A-OA region we find it to represent around **33% LHF increase per °C of SST** .

Validation using WRF output

We compare the downscaled LHFs with LHF_{wRF}. The latter is computed applying COARE3.5 [2] to the original WRF variables.

Coupling coefficients

The downscaling approach ameliorates by a factor of two (roughly) our LHF estimates in the region providing confidence in the results.

vapour saturation pressure-SST relation. it represents 5%·°C⁻¹ approximately.

Ocean mixed layer stratification and LHF

Watermass identification using Saildrone data

For low values of SSS, the entrainment of cold waters from the deep ocean is inhibited and the heating rate of the mixed-layer increases. This results in an increase in LHF. We observe the opposite \rightarrow increase in $q_{2m} \rightarrow$ atmospheric profiles.

Shortcomings and next steps

1 How can we relate LHF to the mixed layer energy budget? Processes involved?

References

[1] Cronin M. *et al*, Front. Mar. Sci. 6, 430 (2019).

(2) How important is the diurnal cycle signal on in-situ data measurements → MSSA.
(3) Need to study the MABL structure → lidar data and radiosoundings.
(2) Edson J. B. *et al.*, Jour. Phys. Ocean 44(9), 1589
(2013).
(3) Frenger I. *et al.*, Nat. Geo. 6, 608-612 (2013).
(4) Xu H. *et al.*, Jour. Clim. 24 4959-4972 (2011).
(5) Pasquero C. *et al.*, Geo. Re. Lett. 48
(2020GL091185 (2021).