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Recent Bering Sea climate extremes:
• Extreme low sea ice extent [6]
• Increased heat flux variability [2]
• Elevated sea surface temperature [7]

Net Air-Sea Heat Flux = Radiative + Turbulent 

Sensible = 𝜌!𝐶"𝐶#𝑉$%∆𝑇Latent = 𝜌!𝐶&𝐿'𝑉$%∆𝑞Net Shortwave + Net Longwave 

October-March, 2010-2021: 
• > 2000 EJ (1018 J) excess heat entered the Bering Sea due to anomalies in 

the net heat flux
• Turbulent fluxes accounted for ~85% of total excess heat
• Total sensible heat flux anomalies were an order of magnitude greater than 

latent heat flux anomalies

Daily, area-averaged air-sea heat flux anomalies over the ice-free Bering Sea, during the sea ice season 
(October –March, 2010-2021). Anomalies are computed relative to the 1979-2010 climatology (ERA5)

Decomposition of sensible (SHF) and latent (LHF) heat fluxes 
→ Daily climatology (𝑥̅) and daily anomaly (𝑥′)

𝑆𝐻𝐹( = 𝜌!𝐶"𝐶#𝑉$%∆𝑇′ → 𝜌!𝐶"𝐶#[ /𝑉$%∆𝑇( + 𝑉$%( /∆𝑇 + 𝑉$%( ∆𝑇(]
𝐿𝐻𝐹( = 𝜌! 𝐶&𝐿'𝑉$%∆𝑞′ → 𝜌!𝐶&𝐿'[ /𝑉$%∆𝑞( + 𝑉$%( /∆𝑞 + 𝑉$%( ∆𝑞(]

Sign and magnitude of turbulent flux and air-mass anomalies linked 
to wind direction (𝜃)

• Northward winds → decreased ocean heat loss
• Southward winds → increased ocean heat loss

Daily, area-averaged turbulent heat flux anomalies and decomposition terms over the ice-free Bering Sea, 
during the sea ice season, October-March, 2010-2021 (ERA5)

Turbulent heat flux anomalies and decomposition terms bin averaged by wind 
direction, 𝜃. Shaded regions depict 95% CI of means in each bin (ERA5)

Surface forcing is a key driver of mixed
layer temperature (MLT) anomalies on 
subseasonal-to-seasonal timescales [4]

→ ∆𝑞′ describes ~88% of LHF’ 
variance

→ Air specific humidity    
anomaly (𝒒𝒂′) dominates

→ ∆𝑇′ describes ~93% of SHF’ 
variance

→ Air temperature anomaly
(𝑻𝒂( ) dominates
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Atmospheric variability is driving the majority of 
Bering Sea warming, and likely plays a dominant 
role in the initiation of MHW in the region

The turbulent components of the net 
heat flux dominate surface forcing 
variability in fall through early spring [4]

Dominance analysis (DA) [1] that describes the generally dominant term 
in the net air-sea heat flux anomalies over the Bering Sea. DA accounts 
for interactions/cross-correlations between component terms in the net 
air-sea heat flux (ERA-Interim)

• Surface forcing anomalies account for most of the 
mixed layer temperature tendency anomalies 
→ Assess spatial and temporal variability of the mixed 

layer heat budget dynamics 
• Sensible heat flux anomalies are the dominant driver 

of ocean warming during the sea ice season
→ Evaluate feedback mechanism between sea ice loss 

and increased turbulent heat flux
• Atmospheric variability (air temperature and specific 

humidity anomalies) drives ocean warming flux 
anomalies 
→ Determine the role of meridional heat and moisture 

convergence on intra-seasonal and synoptic-scales

This work is part of two manuscripts in preparation

Spatially-averaged, daily SST anomalies (grey) and MLT anomalies (black). 
Linear trend for SST’ has a slope of 0.02 ± 0.00071 °C/year over the full period 
(1979-2021) and increases to 0.12 ± 0.0057 °C/year, over 2010-2021 (ERA5 
and ECCO Ocean State Estimate)
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GOD’

GSF’

Balance Metric, MB 
[3]:

• Describes relative importance of ocean dynamics (GOD’) to 
surface forcing (GSF’) in driving MLT tendency anomalies
• GOD= Advection + Diffusion

• MB ≅ 1: GSF’ drives majority of MLT variability 
• MB ≅ -1: GOD’  drives majority of MLT variability 

Balance metric computed for the period 1992-2017 from monthly ECCO 
anomalies (relative to 1992-2017 baseline). The heat budget terms used 
in the metric were computed over the depth of the mixed layer and thus 
describe the MLT tendency(ECCO Ocean State Estimate) 

• (Sub)mesoscale air-sea coupled processes in the sub-Arctic and Arctic are poorly observed and understood, but appear to be a key
driver of recent ocean warming and sea ice loss in the Bering Sea

• Our work supports the need for sustained, long-term surface air-sea heat flux measurements in the Bering Sea, which are crucial to 
monitoring climate change in the region and diagnosing their impacts

• Our turbulent heat flux decomposition may be a powerful tool for diagnosing air-sea coupling, and for assessing the role of the 
atmosphere in driving mesoscale ocean anomalies 
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Wind speed anomalies are NOT driving turbulent heat flux anomalies 
→ Atmospheric circulation anomalies drive anomalous 

surface temperature and moisture

These extremes are difficult to predict…
→ Underlying physical mechanisms of the 

warming trend and subseasonal variability 
are not well understood


