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1. Bering Sea climate variability and the role of surface forcing 2. Wintertime warming forced by turbulent heat flux
Recent Bering Sea climate extremes: Surface forcing is a key driver of mixed The turbulent components of the net 'l\'_e_t_'A;'[ Sea Heat Flux = Radiative + Turbulent ;

- Extreme low sea ice extent !  layer temperature (MLT) anomalies on  heat flux dominate surface forcing —_— \.

* Increased heat flux variability 12! ~ subseasonal-to-seasonal timescales 4 variability in fall through early spring ! [Net Shortwave + Net Longwave] Latent = p,CgLyVipAq , | Sensible = p,CpCyVioAT

° 7
Elevated sea surface temperature "] October-March, 2010-2021:

« >2000 EJ (108 J) excess heat entered the Bering Sea due to anomalies in
the net heat flux

« Turbulent fluxes accounted for ~85% of total excess heat

+ Total sensible heat flux anomalies were an order of magnitude greater than

latent heat flux anomalies

These extremes are difficult to predict...
— Underlying physical mechanisms of the
warming trend and subseasonal variability
are not well understood
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Sign and magnitude of turbulent flux and air-mass anomalies linked
Decomposition of sensible (SHF) and latent (LHF) heat fluxes to wind direction ()

: - Atmospheric variability is driving the majority of
_, Daily climatology () and daily anomaly (x') Northward winds — decreased ocean heat loss P y g Jority

» Southward winds — increased ocean heat loss Bering Sea warming, and likely plays a dominant
SHE' = paCpCuV10AT" = paCpCulVioAT" + VioAT + VioAT'] o [ role in the initiation of MHW in the region
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surface temperature and moisture
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