Cyclonic and anticyclonic contributions to air-sea interactions around midlatitude oceanic frontal zones

Satoru Okajima¹, Hisashi Nakamura¹, Thomas Spengler²
¹Research Center for Advanced Science and Technology, The University of Tokyo, ²University of Bergen

okajima@atmos.rcast.u-tokyo.ac.jp

Motivation

- The Kuroshio-Oyashio Extension and Gulf Stream frontal zones are vitally important for midlatitude air-sea interactions and the maintenance of storm-tracks & westerly jets.
- Synoptic-scale fluctuations play a pivotal role in the air-sea interaction.

STDEV of daily THF (Kelly et al. 2010)

Around NH frontal zones, subweekly THF fluctuations are prominent.

- However, specific processes related to the interaction have not been sufficiently understood, esp. their contributions to climatological means.

Methods

Evaluation of cyclonic and anticyclonic contributions:

Identification of cyclonic and anticyclonic domains is based on local curvature of the unfiltered winds (Okajima et al. 2021)

\[
\Gamma = \frac{1}{2} \left(\sin \phi \frac{d^2 U}{dy^2} + \cos \phi \frac{d^2 V}{dy^2} \right)
\]

850-hPa curvature is used for 2-D variables (e.g., THF)

Atmospheric reanalysis:

JRA-55 (Kobayashi et al. 2015), 1958/59-2017/18

Assessment of the frontal impacts:

Through AGCM experiments with realistic/smoothed frontal zones (Kawano-Yoshida and Minobe 2017)
- T239(0.5°), 20-year (1981-2001) for control (realistic fronts) & smith (smoothed only over NP or NA) experiments using AFES3

Moisture exchange b/w cyclonic and anticyclonic domains:

Moisture flux projected onto the upgradient direction of local curvature

\[\frac{\partial q}{\partial x} \] (Positive: anticyc - cyc)

is calculated as a measure of moisture exchange.

Transient eddy feedback forcing onto westerly jets:

Based on the 3-D height tendency equation with responses of Eulerian eddy statistics from 8-day high-pass fields (Okajima et al. 2021)

Key takeaways:

- Climatologically, moisture is transported as a net from anticyclonic domains to cyclonic domain.
- Oceanic fronts reinforce the “acyc -> cyc” moisture transport.
- Anticyclonic domains are the key for westerly wind deceleration feedback response to realistic oceanic fronts.

Precipitation – Evaporation (mm/day; DJF-mean)

Responses of \(dU_{300}/dt \) by transient eddies (cnt; m/s/month; DJF)

North Atlantic
Gulf Stream front

North Pacific
Kuroshio Extension/Oyashio fronts

Shading: 90/95% significance
Purple contour: \(U_{300} \) control

Cyclonic
Anticyclonic
Cyclonic
Anticyclonic

Additional results (for NA)

- Climatologically", anticyclonic contribution accounts for "40% of THF, while much less for precip.

- THF enhancement is greater over anticyclonic domains, while precip increases mainly within cyclonic domains.

The moisture exchange evaluation supports the climatological "acyc -> cyc" moisture transport and its enhancement by oceanic fronts.

Implications & Future studies

- The quantification of the contributions to THF/precip. leads to a better understanding of the formation mechanism for seasonal SST anomalies due to modulated storm-track activity
- The sensitivity of a basin-scale atmospheric response to midlatitude SST anomalies to the resolution of AGCMs
- Relationship between the enhanced THF and the upper-level jet response
- Comparison between JRA-55C and JRA-55S
- Future change

References

Acknowledgements

This study is supported in part by the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) through the Arctic Challenge for Sustainability (JACS-5) and through the advanced studies of climate change projection (SENTAN) Grant Number JPMJDO1722BB03H5, by the Japan Science and Technology Agency through CO-NEXT JPMXPP2015, by the Environmental Restoration and Conservation Agency of Japan through Environment Research and Technology Development Fund JPMREI12022002, and by the Japan Society for the Promotion of Science (JSPS) through Grants-in-Aid for Scientific Research 19H05702 (on Innovative Areas 6302), 22H05192 and 22H06207.

*1 include both high- and low-var. components. *2 Similar results are obtained with 925-hPa u. *3 Results in "control" are qualitatively the same as in JRA-55.

*4 Additional results (for NA)

- Climatologically", anticyclonic contribution accounts for "40% of THF, while much less for precip.

- THF enhancement is greater over anticyclonic domains, while precip increases mainly within cyclonic domains.

The moisture exchange evaluation supports the climatological "acyc -> cyc" moisture transport and its enhancement by oceanic fronts.

Implications & Future studies

- The quantification of the contributions to THF/precip. leads to a better understanding of the formation mechanism for seasonal SST anomalies due to modulated storm-track activity
- The sensitivity of a basin-scale atmospheric response to midlatitude SST anomalies to the resolution of AGCMs
- Relationship between the enhanced THF and the upper-level jet response
- Comparison between JRA-55C and JRA-55S
- Future change

References

