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Introduction What can structure functions tell us about ideal mesoscale dynamics? What about more complex systems?
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_ _ _ 1072 1071 Bottom: Advective structure function scaled We simulate decay|ng SQG turbUIGnce, where there is an inertial
to estimate the downscale enstrophy
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2 Cascaderale (red dashed line shows model- cascade of buoyancy variance from large- to small-scales, representing
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many mesoscale data sets is sparse, and analysis : argest scales of the nverse kinetc eneroy | a scale-varying spectral flux (i.e., it is not an inertial cascade) |
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There are two particularly useful statistics to diagnose 2

spectral fluxes: advective structure functions (su - 64,
where A, = (u - V)u; Pearson et al., 2021) and third-order

* An array of structure functions provide useful tools for mesoscale-
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structure functions (5u, (5w~ 310)) Structure function (normalized) ocean analysis (we only discussed two structure functions here).
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Figure 3. Snapshots of vorticity in simulations of 2D turbulence with varying degrees of |

» Advective structure functions converge to the correct result
faster than third-order structure functions.

anisotropy. Arrows in the left panel denote different structure function calculation directions
(see Figs. 1 & 2)

.“.......................................................................................................................‘ (] OngOing Workto eXtend these methOdeorincreaSingly realistic
The table below shows theoretical relations between . - = - - - -
ceveral strUctre functions and fhe inverce erer : Some pros and cons of Advective Structure Functions (SFs) : ocean flows, quantify sampling/convergence properiies of
9y : B - different structure functions, apply these tools to various
cascade rates (¢,,) and downscale enstrophy cascade : S 100 . Third-order | . Advective | - :
(€,) o | P y. : Pros s | ; ectral estimate | g : observational data sets, and create an open-source Python
rates (n,,) of 2D turbulence. Similar relations exist for : . . . | ; | —= ; : : :
| | - | Advective SFs (Fig. 1) can diagnose: B i /, = R A iy - toolbox for structure function analysis.
quasi-geostrophic turbulence. - ; | | ; ; :
e e - 1 : Direction & rate of spectral Zaoel § ey i :
Structure r Enstrophy! I Inverse energy I : _ _ P _ i i Forcing} ~  Someml Ly : References
f t. I d I I d O u CaSCade (I nCI Ud I ng Overlappl ng % B i I 1 scale : 10 degree bands (zonal) : Jet scale -
uncton I cascadce ﬂvl cascadc eu > [ . _ _ = 0T 10° 07 ' Tos ' . Pearson, B. C., Pearson, J. L., & Fox-Kemper, B. (2021). Advective structure functions in anisotropic two-dimensional
I U and non-inertial CascadeS) _ _  Separation Distance o _ L Separation Distance _ x turbulence. Journal of Fluid Mechanics, 916, A49.
I 1 I | m Figure 5. Estimates of the inverse cascade rate of kinetic energy in Jupiter’s atmosphere using (left) third-order structure functions and : _ _ ; _ _ _ _
du » (SAu > Ny rz [ 2€ m : . (right) advective structure functions. Statistics were calculated using a satellite (Cassini) day-snapshot of Jupiter’s upper atmospheric = Constantinou, N., Wagner, G., Siegelman, L., Pearson, B., & Paloczy, A. (2021). GeophysicalFlows. jl: Solvers for geophysical fluid
- : I . tion. Red and blue li h tructure functi lculated with | and idional ti tively. Grey li how th m ' [ iodi i C &G . fO S Soft .
1 3 3 : Spatial variabilty of the zonal structure function (one line for each 10-degree-laitude band). The grey shading denotes a spectrally-derived  ® cynamics propiems ih periadic domeins on S8 & BEHS, Jodmatof Gpen Boufe Sorars, AE |
Sur Sur & : I Scale of forcing (energy injection) P e omotos & : eS| : g » 6(60)
Urouyoujg, [ ] nyr I I 5 €Enr [ - flux estimate from Young et al., 2017. A snapshot of the vorticity field is shown below. - Xie, J. H'., & Biihler, O. (2019). Third-order structure functions for isotropic turbulence with bidirectional energy transfer. Journal of Fluid
1 | : . . 55— o — : Mechanics, 877, R3.
8uL (8” : 3“) | 4 nvr3 . : 26‘1}' m They can Utlllze "TeglJIar/ gappy data C o n s o \ e : gl i VR : Young, R. M., & Read, P. L. (2017). Forward and inverse kinetic energy cascades in Jupiter’s turbulent weather layer. Nature
V [6 ((S 8 )] | r2 | I 46 | : “*w““ heie -":‘5%“‘”1'; ‘;“‘:f"'"* *“"}éw u Physics, 13(11), 1135-1140.
r El u u e u I nv u I : . . _ . . . . . % : .\.-,.:.u.,,jj " ,':":‘ ,-“;;! e -,“’- ':w-*“*‘ °~ :
_____ ] o o o o o : Unlike third-order SFs, advective SFs Advection term requires local derivatives :| e : Acknowledgements
— . = | converge qu|Ck|y and can be app“ed to = iy l: R fee /{5\ - This work was supported by the National Science Foundation, through grants and REU support, and by the Office of Naval Research.
Grey JeED lellEzite r_elatIO_nS that do E aniSOtrOPiC flows Heterogenelty effects are an open queStlon ," ' ‘ o Fa : - Contact information
not assume ISOtrOpy In their derivation o -553g T Longltude I 0 ’: College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, OR 97331

.IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII’ ° Email:brodie_pearson@oregonstate_edu




