Effect of Freshwater Input into the Tropical and Subtropical Ocean from Small- to Meso-Scales

Alexander Soloviev¹ and Roger Lukas²

¹Oceanographic Center, Nova Southeastern University, Dania Beach, FL 33004 USA
²Department of Oceanography, University of Hawaii, Honolulu, HI 96822 USA

Introduction

The TOGA Coupled Ocean-Atmosphere Response Experiment (Webster and Lukas, 1992) focused observations and modeling on two-way atmosphere-ocean spatial and temporal scale interactions (Mei et al., 2001) in the western equatorial Pacific warm pool. Recently, Dong et al. (2019) showed that the warm pool plays a uniquely large role in determining the global radiative feedback to global CO₂-induced surface warming, attributing this to the very deep atmospheric convection over the warm pool. Palmer and Stevens (2019) show that the bias error in seasonal mean precipitation is larger than the deep atmospheric convection over the warm pool. Palmer and Stevens (2019) show that the magnitudes of small-scale SST variations in the warm pool are associated with convective rainfalls within the processes. Carbone and Li (2015) show that the anthropogenic signal in many regions around the globe, arguing for a quantum leap in spatial resolution to eliminate parameterizations of unresolved processes. Carbone and Li (2015) show that the magnitudes of small-scale SST differences are associated with convective rainfalls within the envelope of the Madden-Julian Oscillation. Here, we show observations and model results that support the conclusion that the atmosphere and ocean are strongly coupled on the convective cell scale in the warm pool of the western Pacific Ocean.

Conclusions

• Rainfall into the tropical and subtropical ocean is often from convective cells with scales of O(10 km). Another source of freshwater input to the ocean is river runoff.
• Due to the significant density difference between fresh and seawater, near-surface lenses and fronts develop, which then spread horizontally becoming progressively thinner.
• While spreading, the freshwater lenses interact with existing ocean stratification and wind stress, as well as the diurnal cycle of solar radiation, eventually mixing and merging with other lenses. Such small-scale processes are important for creating the deeper layer known as the barrier layer (BL, Lukas and Lindstrom, 1991). There are numerous strongly nonlinear processes involved.
• The BL is an important component of climate, especially in the tropical and subtropical ocean (Sprintall and Tomczak, 1992) and is known to influence some tropical cyclones.
• Because of strong nonlinearity and thermal feedbacks to the atmosphere the physical connections across time and space scales need to be modeled explicitly (Carbone and Li, 2015; Palmer and Stevens, 2019).
• Incorporation of sub-mesoscale processes and small-scale parameterizations involved in freshwater input in coupled models may lead to a better understanding and modeling of tropical cyclones, oil spill propagation, and climate.

Acknowledgements

We acknowledge support by the National Science Foundation as part of TOGA COARE. We thank Silvia Matt (NSU-now with NRL-Stennis) and Cayla Dean (NSU—now with NOAA) for computational fluid dynamics modeling, William Pierce and Hua Shao (WHOI; Susanne Lehner and Egbert Schwarz (DLR) for providing SAR satellite imaging, and Teryn Ogden (UM RSMAS) for support during CARTHE/GoMRI.

References

Carbone, R.E., and Y. Li, 2015: Tropical Oceanic Rainfall and Sea Surface Temperature Structure: Parsing Causation from Correlation in the MJO, JAS 72 (7), 2703-2718.
Dong, Y. et al., 2019: Attributing Historical and Future Evolution of Radiative Feedbacks to Regional Warming Patterns using a Green’s Function Approach, J. Climate 32, 5471-5491.
Dong, Y. et al., 2019: Attributing Historical and Future Evolution of Radiative Feedbacks to Regional Warming Patterns using a Green’s Function Approach, J. Climate 32, 5471-5491.
Palmer, T. and B. Stevens, 2019: The scientific challenge of understanding and estimating climate change, PNAS 116 (49), 24390-24395.