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Freshwater lens edges are a barrier for 
oil spill propagation
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• Rainfall into the tropical and subtropical ocean is often from convective cells with 
scales of O(10 km). Another source of freshwater input to the ocean is river 
runoff.

• Due to the significant density difference between fresh and seawater, near-surface 
lenses and fronts develop, which then spread horizontally becoming progressively 
thinner.

• While spreading, the freshwater lenses interact with existing ocean stratification 
and wind stress, as well as the diurnal cycle of solar radiation  eventually mixing 
and merging with other lenses.  Such small-scale processes are important for 
creating the deeper layer known as the barrier layer (BL; Lukas and 
Lindstrom,1991). There are numerous strongly nonlinear processes involved.

• The BL is an important component of climate, especially in the tropical and 
subtropical ocean (Sprintall and Tomczak, 1992) and is known to influence some 
tropical cyclones.

• Because of strong nonlinearity and thermal feedbacks to the atmosphere the 
physical connections across time and space scales need to be modeled explicitly 
(Carbone and Li, 2015; Palmer and Stevens, 2019). 

• Incorporation of sub-mesoscale processes and small-scale parameterizations 
involved in freshwater input in coupled models may lead to a better 
understanding and modeling of tropical cyclones, oil spill propagation, and 
climate.
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Conclusions

Spreading lenses generate spatially coherent structures 
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The TOGA Coupled Ocean-Atmosphere Response Experiment (Webster and 
Lukas, 1992) focused observations and modeling on two-way atmosphere-
ocean spatial and temporal scale interactions (Meehl et al., 2001) in the 
western equatorial Pacific warm pool. Recently, Dong et al. (2019) showed that 
the warm pool plays a uniquely large role in determining the global radiative 
feedback to global CO2-induced surface warming, attributing this to the very 
deep atmospheric convection over the warm pool. Palmer and Stevens (2019) 
show that the bias error in seasonal mean precipitation is larger than the 
anthropogenic signal in many regions around the globe, arguing for a quantum 
leap in spatial resolution to eliminate parameterizations of unresolved 
processes. Carbone and Li (2015) show that the magnitudes of small-scale SST 
variations in the warm pool are associated with convective rainfalls within the 
envelope of the Madden-Julian Oscillation. Here, we show observations and 
model results that support the conclusion that the atmosphere and ocean are 
strongly coupled on the convective cell scale in the warm pool of the western 
Pacific Ocean.
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