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Introduction NASA ECCO ocean state estimate mixed layer heat budget analysis during 2013/14 MHW episodes

Over the last ten years, several large-scale marine heatwave (MHW) events occurred in the 2013-2014 Monthly temperature anomaly = 2013-2014 Mixed layer heat budget anomaly  « Fjoyre 3 shows that the mixed layer temperature anomalies agree very closely with the SST
Northeast Pacific Ocean (NEP). MHW events were manifested as a sea surface temperature bt d anomalies. This means that the SST anomalies associated with the 2013/14 MHW can be used as a
(SST) anomaly of about 3°C warmer during winter (Bond et al., 2015; Phillips and O’Neill, 1 ——diffusion | surrogate for the mixed layer temperature anomalies.
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2020), roughly the size of Alaska (Figure 1). Many of these events are associated with highly
anomalies atmospheric conditions, including persistent high-pressure ridging episodes in the
Northeast Pacific Ocean. Meanwhile, increased heat flux into the ocean occurred during O

* The blue curve in Figure 4 shows that the mixed layer temperature tendency anomaly was positive,
A ‘ ‘ indicating that the study area has been warming up between 0.5 and 0.7°C per month due to surface
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. , , : o K , flux anomalies during the 2013/14 MHW events. The total diffusion and advection terms contributed
MHW §Vents. The conditions leading t.o the foormatmn of these large-§cale warm oceanic - v, \/ | A4 relatively little to the mixed layer temperature tendency.
anomalies are not well understood. This project tests the hypothesis that these ridging | . . . o
episodes contribute to MHW events formation by changing the air-sea heat fluxes sl \ | * The 2013/14 MHW was due to atmospheric forcing rather than internal ocean variability.
The relationship between atmospheric circulation, surface heat fluxes, and the warm SST — Mixed layer ﬁ
anomalies are assessed through case studies of two recent prominent MHW events during 1 — 1 R e
winters of 2013 and 2019. This project focuses on the role of surface heat flux anomalies SRR S S R S R WY e WY
input in the ocean from the atmosphere, which are approximately 100 W/m? higher than the Figure 3. Monthly-area-averaged ECCO mixed layer temperature  Figure 4. Monthly-area-averaged ECCO mixed layer heat

anomalies and SST anomalies during the 2013/14 MHW event. budget anomalies during the 2013-14 event.

climatological average during the MHW events considered.
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- Weekly anomaly 08-Dec-2013 - Weekly anomaly 17-Nov-2019 ERAS surface heat flux anomalies associated with MHW events
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- 2013-2014 Anomalies 2019-2020 Anomalies Latent heat flux 1s the most dominant term in the net sea surface heat flux anomalies during the MHW
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Figure 1. SST anomaly with the study area outlined by the blue square. The peak SST anomaly exceeded 3°C during both events. 420 1300 | | | | | | | - e The Chmat()loglcal 10-meter wind speed (V1o) multlphed by the air-sea Sp@ClﬁC humldlty difference
The blue box is the steady area (35-55°N, 135-160°W ). NS N N N .
y area ( ‘ F WY &Y FEE F WY & E Y& anomaly (g, — q<) accounts for most of the latent heat flux anomaly (Figure 6 top).
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Figure 5. Time series of the area-averaged net surface heat flux anomalies during the MHW episodes of 2013/14 and . o . . . —_—
EXtreme Event Case StUdleS 2019/20. Those were smoothed using a 7-day running average. Red box indicates the MHW episodes. * The SpeC1ﬁC humldlt}’ anomaly (qél) 1s the largest amphtude term, while the I/v10 * (_q;) term has a
What happened: 2013 Surface latent heat flux anomaly 2019 Surface latent heat flux anomaly relatively minor effect on the latent heat flux anomaly (Figure 6 bottom).
SST anomalies 1n the Northeast Pacific Ocean were observed to be significantly warmer than w0 __decomposition w0 __decomposition . , . . L .
. . . * Figure 7 shows q, average as a function of anomaly wind direction. Anomalous southerly winds
average during winter 2013/14 and 2019/20. In February 2014, peak temperature anomalies . ; . . . . .
‘ p A N , bring moist warm air from the tropical region to the south of the study area and vice versa. These
of the near surface (upper ~100 m) waters exceeded 3 C (Bond et al., 2015). " , : ... . .
Y TR B | |\ _dor , t : humidity anomalies modulate evaporative heat loss from the ocean surface.
Impacts: € AR 't ‘ £ | b < [\ A . . . . .
P . . o . = ‘ol oa J A | S I VRRT b ‘ AN *  Wind speed anomalies are not driving turbulent heat flux anomalies.
The long duration and the location of MHW had significant impacts on downstream weather % ol ‘- pAAAAARY AL A % ol AQ. '\\"/"’J \
3 /YY) \V) q_? “ \J ° ° ° ° ° ° ° °
and precipitation patterns (e.g., Swain et al., 2014; Seager et al., 2015) and regional ocean 7 v " : y w v ' ! ‘, * This analysis shows that atmospheric circulation anomalies were the dominant factor in
ecological dynamics (e.g., McCabe et al., 2016, Jones et al., 2018). T el : | ] T ol y generating these MHW events by decreasing evaporative cooling of the sea surface.
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Figure 2. Time series of daily area- & & N & & & & O & & ~ | | I winter . . .
-1} | averaged SST anomalies since 4 | | | | | i | F/.gure 7. Specific hum/d./ty anomaly
|)} 2001, the region shown in Figure 1. Figure 6. Time series of the area-averaged latent heat flux anomalies and the terms in the decomposition in 2013 and -180  -135  -90 -45 0 45 90 135 180 binaveraged as a function of wind
| | ; : 2019. Those were smoothed using a 7-day running average. Red box indicates the MHW episodes. Wind direction anomaly (degree) angle during the year of MHW events.
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