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1. Introduction, scope and Data
Mediterranean droughts have become more frequent and intense in recent years and are expected to become more
widespread in many regions. In this context, seasonal forecasts produced by global numerical models have emerged
as promising tools for seasonal climate risk assessment. Yet, all seasonal probabilistic forecasts are not equally
accurate, and metrics are needed to quantitatively assess their quality.
A rigorous evaluation process is needed to:
• Determine the extent to which seasonal forecasts provide a fruitful advantage over much simpler forecasting

systems, such as those based on climatology. [1]
• Help an informed use of seasonal forecasts of droughts and the development of related climate services.

The Copernicus Climate Change Service (C3S) provides forecast data from several state-of-the-art seasonal
prediction systems at 1° x 1° resolution and daily frequency. [2] Here we use:
• The fifth version of the seasonal forecasting system provided by the ECMWF (SEAS5).
• ERA5 reanalysis.

Region in analysis: [11W - 43°, 28N – 59N], years 1981 through 2020.

2. Methods
Summer droughts detecXon: Standardized PrecipitaGon EvapotranspiraGon Index aggregated over three months
(SPEI3) calculated in August.

• SPEI3: data iniGalised on the 1st of June and aggregated over June, July and August (0-months lead Gme)
• SPEI3: data iniGalised on the 1st of May and aggregated over June, July and August (1-month lead Gme)

Our evaluaXon process includes several evaluaGon metrics, that test different features describing the quality of the 
forecast system [3]. 
Forecast skills are presented as skill scores (SS), which are interpreted as the improvement over a reference forecast.

- S is the score of the forecasting system
- Sref is the score of the reference forecast
- Sperf is the perfect score

𝑆𝑆 =
𝑆 − 𝑆𝑟𝑒𝑓
𝑆𝑝𝑒𝑟𝑓 − 𝑆𝑟𝑒𝑓

We calculate from the ERA5 reanalysis all the historical
August SPEI3 values. For each year, we use all the historical
SPEI3 values except for the one corresponding to that year,
in order to form an ensemble of 39 members (one less than
the number of forecasted years). This is an elementary
forecast system based on the observed climatology.

3. Quality evaluation

Ini$alisa$on: 
June 1st 

0-months 
lead .me 

Initialisation: 
May 1st 

1-months 
lead time 

Brier Skill Score (BSS)
Area Under the ROC Curve 

Skill Score (AUCSS)
Con9nuous Ranked 

Probability Skill Score (CRPSS) Rank Histogram (RH)

Based on categorical observations (binary outcomes: SPEI3 < -1) Considering the probability distribu3on of forecasted values 
Skill Scores

• Averages the squared differences 
between pairs of forecast 
probability and subsequent 
binary observations. 

• It measures the overall accuracy
of the forecast (intended as 
average correspondence 
between individual forecasts and 
the observations). [1,3]

• Measures the area under the 
Receiver OperaXng 
CharacterisXc curve.

• It measures discriminaGon (If 
the forecast assigns higher 
probabiliXes to events when 
they occur compared to when 
they don't, it has discriminatory 
ability. [1, 3] 

• Averages the difference between 
the cumulative distribution 
function (CDF) of the forecast 
system and the respective 
observation (represented by a 
Heaviside step function). [1, 3] 

• It measures accuracy and 
sharpness (a sharp forecast 
exhibits a small spread).

• Compares the ranks of forecasts 
with the rank of observaXon. 

• It measures whether the 
probability distribuXon of 
observaXons is well represented 
by the ensemble. Any deviaXon 
from the ideal flat histogram 
indicates a potenXal bias. [1,3]

Punctual Rank Histograms (PRH)
The difference between the mean of the frequencies of the
side bins and the frequency of the central bin (Δfrequencies):
• Positive values: under-dispersion
• Negative values: over-dispersion
• Around zero values: the RH can either be flat (perfect) or

the height of the bins is linearly increasing or decreasing.

The slope given by the linear interpolaXon of the height of 
the bins in order (bin slopes). 
• PosiXve slope: under-forecasXng bias 
• NegaXve slope: over-forecasXng bias 
• Around zero slope: perfect histogram or strongly under-

dispersion or over- dispersion biases. 
We replicate one RH for each 
grid point (three bins only!)
and produce two maps that 
together help understanding 
the shape of the PRH.

4. Conclusions
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• Accuracy and sharpness are limited for all lead Xmes.
Improvements/worsenings with respect to the
elementary forecast are small.

• DiscriminaXon is good when lead Xme is 0, and decreases 
for lead Xme 1, except over Turkey and North Africa. 

• The shape of the rank histograms is similar for the 
different lead Xmes. A strong under-forecasXng bias is 
present for both lead Xmes. 

Next.. Repeat the same procedute with other state-of-the-
art seasonal forecasXng systems. 


