How Does Dry Model with same wave energy represents blocRing circulation?
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Introduction

Comparative Analysis :

Why Less frequent blocking in dry model ? } ERAS Reanalysis and a Dl'y Model [ To investigate blocking structure and Size . } Moist dynamics modifies the air mass for blocking
circulation in addition to dry dynamics and increase

WITH Temporal persistence = Blocks Winter Climatology of Blocking Frequency Centered composite analysis - Eulerian

intensity, size, and duration of blocking (Pfahl, et al.
ERA5 Dry Model Mapa 2015, Steinfeld, D. 2019)

£ : Strikingly similar
Ilustrag#dn of dry and moist processes in'Wocking Steinfeld, D. (2021) LA | _ | structures
Dry Dynamics Moist Dynamics % | througt}.lout the _
Coione gt 1 e
understanding its role £ e We surprising see no major change in the
Key Questions © gE B es mean characteristics of blocking in the dry
Do moist processes produce unique characteristics o 25 model.
in the blocking that cannot be captured by dry e e o i | e There is no new or unique blocking
dynamics ? Rk e matelstage ) A D N E characteristic.s which cannot be captured
WITHOUT Temporal persistence = - OPVAs ——— ST SRy dynamics ,
- Blocked days (%) e The reason for less frequent blocking
e How does a dry dynamical model with realistic , . occurrence in dry model can be partiall
wave energy rreyperuce blocking ? e | Mean Characteristics of detected blocks Indirect effect of latent heating vy - VPV explained by rggriyonal wind and Eddy :
e Dry Model: N ERAS NH ERAS NA N ERAS NP | energy biases
o Relaxed towards a restoration-equilibrium “/#. Dry Model NH /7 Dry Model NA &% Dry Model NP | Stronger divergent winds leads e Dry model compensates the lack of
potential temperature (Chang 2006). % to strong low PV advection moisture by more upper level trajectories
= il o, | XYPV, which amplifies and transporting low PV airmass from lower
Ao, ¢,p) _ _ A, p.p) ~ (9, p) z 1 ) ] makes the blocking ridge latitudes. To investigate the influence if
dt e, p) 3 075 % = 016 | quasi-stationary. (Steinfeld, D. air sea interaction on blocking dynamics:
o Iterative process to get model climatology close o~ (2021)
to ERAS climatology (Chang2006) N B e e g o (240
e Comparative Analysis: long term winter simulation All negative OPVA at mature stage (%) 2 0.25 ~ | weaker divergent wind and PV _
of Dry GCM model vs ERAS reanalysis. ° = = "% | advection in the dry model are bt
o ERAS : 41 year winter (1979-2021), . In .the dry m9del BlocRing Duration Intensitu Size =2t compensated by episodes of Key Question :
o Dry Model : 21 year perpetual winter : ’];:‘)}i}.llblts aene short lived negative OPVA.. freq.% (Days) (PVU) Km2 = 0 weaker background flow , by the e How does moist simulation with forced SST
is negative OPVA are less persistence likely due to A resradines Bleaking dralbtficns

: faster background wind in North Pacific . % i : - '2I0~ : rotational .component (vop- VPV) . Cof S . blocki
Climatology _ e Weaker eddy energy leads to weaker blocking : , — - of zonal wind. LR 2IBKEIE (OIF AT ARl LEINLy @l DIGEl itz
Despite less frequent blocking, mean characteristics remain r

i oh- _ occurrence in North Atlantic e . . . . i ation :
STD of high-freq V(t<8 days) low-freq V(t>8 days) similar, further analysis focusing on this key features is Understanding in eraction on
presented in the adjacent sections blocking dynami
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oo o, 11 \/ v

10 Orientation of trajectories 3 days before blocking onset ‘ﬁ[ Why blocks in dry model have nearly the same Intensity ? }é‘_‘ Mean temporal evolution PV lagrangian budget Key Question :

9 e How does latent heat fluxes from gulf stream
ERAS Dry Model v.2s

Investigating 3-Days backward Lagrangian trajectories from block onset oo
/| —— ERA5 == Dry Model

v £0.75
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weather events in Euro- Atlantic region. ?

Experiment
e Sensitivity numerical experiment performed

with ECMWF-IFS model. (Jamie Matthews)
In progress..

iso-PVclim |

Upper troposphel

Wind climatology and variability are very well captured by the , Upper troposphere
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dry model with some moderate biases

Detection Tool _

PV based Blocking detection method ((Schwierz et al.,
2006) Strong , coherent and persistent low PV anomalies 100 200 300 400 500 600 700 800 900
(PVA) contours are detected in upper troposphere Pressure [hPa]

+ Temporal
Persistence

7 lock contour detection (Steinfeld, D. 2019)
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e ERADS exhibits more lower-level trajectories Equator

for blocking onset , while the dry model In ERAS the lower level trajectories transport low PV efficiently to blocking region.

mostly shows upper-level trajectories, around e In ERAS This drop in PV values are associated with trajectories experiencing
68% (compared to 54% in ERA5). negative PV tendency just above the heating gradient. {j}

® More trajectories are adiabatically heated in ® In dry model the more upper level trajectories efficiently crossing more PV
ERAS than in dry model

climatology which results in gradual PV anomaly decrease ’
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