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Motivation：
It is well known that multiscale interaction plays a critical role in the atmospheric blocking dynamics, and
has been the focus of numerous studies during the past few decades. However, a fully localized four-
dimensional Lorenz energy cycle has not been obtained so far due to a lack of appropriate methodologies.

Two problems in conventional multiscale energetics formalisms and our solutions:
Problem 1: Multiscale energy is a phase-space notion; its localization is by no means trivial
If we have a signal with only two components 𝑢 𝑡 = $𝑢 𝑡 + 𝑢! 𝑡  — a low-frequency one $𝑢 𝑡 =
𝑎"𝑐𝑜𝑠𝑡 and a high-frequency one 𝑢! 𝑡 = 𝑎#𝑐𝑜𝑠10𝑡, then what are the respective energies associated 
with them?

Obviously,  (%𝑢)! ≠ 𝑎"!,  (𝑢#)! ≠ 𝑎$! ; in fact, they are conceptually different: %𝑢(𝑡) lies in physical space, while 𝑎"! is in phase space!

Empirical expression widely 
used in the literature

The fact we all know from the 
Fourier power spectrum

Energy for !𝑢:	( !𝑢)!
Energy for 𝑢": 	(𝑢")!

Energy for !𝑢:	𝑎#!
Energy for 𝑢": 	𝑎$!

Solution: In the above problem, the Fourier coefficients do not have the local information, which is 
usually needed for real atmospheric process studies. So the Fourier transform needs to be generalized, 
and this was the original motivation of those local transforms such as wavelets. For this particular 
problem, certain issues prevent wavelet transform from being directly applied, and Liang and Anderson 
(2007) hence developed Multiscale Window Transform (MWT) to handle the problem. While 
orthogonally making decomposition of a field by scale and providing filtered fields (reconstructions), 
MWT also provides transform coefficients for the corresponding filtered fields. This not only ensures 
energy conservation during a decomposition (thanks to the Parseval relation in functional analysis), but 
also makes it possible to express multiscale energies in terms of transform coefficients.
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where the two terms at the right hand side of Eqns. (1) and (2) are extensively interpreted as transfer 
term among scales. However, it is obvious that                                This means that the energy 
transferred from the mean flow to eddies does not equals to the energy reserved by the eddies from the 
mean flow—violating the principle of energy conservation. This is caused by the fact that the 
empirical transport-transfer separation in Eqns. (1) and (2) is not unique and hence the resulting transfer  
is actually ambiguous (Holopainen 1978, Plumb 1983).
Solution: Liang (2016) demonstrated that the cross-scale energy transfer can be rigorously derived, and 
hence a unique separation of it from the multiscale transport is achieved naturally. In the special case 
with respect to Reynolds decomposition, the equations corresponding to (1) and (2) prove to be

( ) ( ) 0T TT T¢ ¢- Ñ × + - ¢×Ñ ¹¢vv

2 21 1 1 .
2 2 2

T TT T
t
¶ ¢ ¢Ñ ¢+æ ö æ ö¢ × =ç ÷ ç ÷¶ è ø è ø

+ Gv v 2 211
2

1 ,
2 2
T T TT

t
¶ ö ¢ ¢æ æ öÑ × = -Gç ÷ ç ÷¶ è ø è ø

+ +v v

where ( )2
.1 TT T T¢é ù¢ ¢Ñ × - ×Ñ û¢= ëG v v

Flow chart of  this study

Result 1: Different from the famous eddy strain mechanism, the upscale forcing is found to 
dominate downstream, NOT upstream
For the interaction between the blocking and the high-frequency storms, the well-known critical role 
of the upscale forcing in the blocking development is confirmed. But, unexpectedly, except for that 
over the Atlantic where the forcing exists throughout, over the other two regions the forcing is found 
to occur mainly in downstream (Fig. 1). This is quite different from what the classical theory, e.g., the 
famous eddy strain mechanism of Shutts (1983), would predict (Fig. 2).

Result 2: 
Different from the traditional point of view, barotropic instability is found to be crucial  
Thanks to the localized nature of the new methodology as used in this study, for the first time we 
identify a dipolar structure (for each of the three regions) in the map of the interscale energy transfer 
from the basic flow to the composite blocking, with a positive center upstream and a negative 
center downstream. This indicates the crucial role of the instability of the basic flow in maintaining 
the blocking, which has been overlooked due to the bulk nature of the classical spatially 
integrated energetics—By summing the transfer over the whole blocking, the two centers 
essentially cancel out, leaving an insignificant bulk transfer.

Fig. 1 Maps of upscale forcing from synoptic eddies to the (a) 
Pacific, (b) Atlantic, (c) Ural blockings (shaded; in 10+,𝑚-𝑠+.). 
Contours are reconstructed geopotential (in 𝑚-/𝑠-) on the blocking 
scale window.
Fig. 2  Schematic diagram of the Eddy Straining Mechanism (Shutts, 
1983), in which the upscale forcing exerts on the upstream of the 
blocking.

Fig. 3 Map of barotropic instability (shaded; in 10+,𝑚-𝑠+.) underlying the (d) Pacific, (e) Atlantic, 
(f) Ural blockings. Contours are reconstructed geopotential (in 𝑚-/𝑠-) on the blocking scale window.

Problem 2: Separation of the cross-scale transfer process from the spatial transport process cannot be 
just performed arbitrarily; physical consistency must be enforced to have energy conserved
To demonstrate the problem, a Reynolds-decomposition is adopted here. For a scalar T advected by an 
incompressible flow v                 

Separate the fields into a mean part and a perturbation part. In this framework the equations of the mean 
and eddy energetics are, respectively,
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It is obvious that the right-hand terms now precisely add to zero. The 
resulting transfer                                       has a Lie bracket form, reminiscent of the Poisson bracket 
in Hamiltonian dynamics, and is hence termed as “canonical transfer” (see Liang, 2016).
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