Contribution of Ural and Kamchatka blockings to the amplified warm Arctic-cold Eurasia pattern under Arctic sea ice loss and Eurasian cooling

Seon-Hwa Kim¹, Hyun-Joon Sung¹, Seong-Joong Kim², Eun-Hyuk Baek³, Ja-Yeon Moon⁴, and Baek-Min Kim⁵ ¹ Pukyong National University, Busan, South Korea / ² Korea Polar Research Institute, Incheon, South Korea / ³ Chonnam National University, Gwangju, South Korea / ⁴ 4D Solution, Co., Ltd., Seoul, South Korea E-mail: seonhwa@pukyong.ac.kr

Quick Summary

Motivation & Objectives

In early winter, sea ice loss over the Barents-Kara Seas can bring more frequent Ural blocking (UB). However, previous studies used the one-type of blocking detection method (local reversal type by Tibaldi & Molteni 1990).

Q1. If we use more different types of blocking detection methods, how will the blocking frequencies related to sea ice loss change?

Q2. Can climate models reproduce the observed linkage between blocking frequency and sea ice loss?

Take-away points

> Increased frequencies of Ural and Kamchatka blocking are concurrent with both the sea ice loss and Eurasian cooling, emphasizing the synergic conditions of sea ice and internal variability in facilitating the frequent blocking events. > Surface impact of the two regional blockings contributes to the amplified warm Arctic and cold Eurasia (WACE) pattern, which is an internal variability of winter surface air temperature over Eurasia.

 \succ CAM5 model experiments can reproduce the observed linkage among the sea ice, blocking, and WACE pattern.

For more information, please contact author (seonhwa@pukyong.ac.kr) or check the article : Kim, S. H., et al. (2022) Contribution of Ural and Kamchatka Blockings to the Amplified Warm Arctic–Cold Eurasia Pattern under Arctic Sea Ice Loss and Eurasian cooling. *Journal of Climate*, 35(13), 4071-4083.

X A Schematic showing the key dynamical mechanism that links regional blockings with Barents-Kara sea ice loss and Eurasian cooling

Key Results

Observed composite fields for each cases

Observed blocking frequency for each cases

Data

Period: 1979-2020 Early winter (November-December) ERA5 (daily Z500, SAT) Hadley center (SIC)

Case definitions

Sea ice loss cannot bring Eurasian cooling by itself. When the Eurasian cooling concurs with the sea ice loss, the positive WACE pattern appears with the more robust Eurasian cooling.

Observed regional blocking impacts for each cases

Modelled regional blocking impacts for each cases

	BK	sea ice loss over Barents-Kara seas
		(17 years)
		When SIC over Barents-Kara is less than 50%
	EU	Strong Eurasian cooling
		(12 years) When SAT over Eurasia is more than 0.5 std below the mean
	EU & BK	Concurrent occurrence of sea ice loss & Eurasian cooling
		(6 years) When BK and EU case coincide

Blocking detection methods

- 1) TM method (Tibaldi and Molteni 1990)
- 2) Hybrid method
 - (HYB, Dunn-siguon et al. 2013)
- 3) Large-scale reversal method
 - (LAR, Masato et al. 2013)
- same tracking algorithm: Spatial criteria= 2.5x10⁶km² Overlap= 50%

If strong Eurasian cooling concurs with sea ice loss, the increased UB and KB are accompanied by a much stronger surface cold anomaly over Eurasia, contributing to the positive WACE pattern.

The CAM5 simulation in EU&BK case demonstrates the multiple blocking attributions to the positive WACE pattern, albeit rather weaker UB impacts in magnitude.

Duration= 5 day

Model configurations

Model	CAM5 re Finite Volume (horizontal 2.5° x 1.9°)	
Dynamic core		
Compset	F2000 (present climate simulation)	
Purpose	To evaluate the atmospheric response to sea ice loss, we conduct two equilibrium experiments	
Experiment Name	CTRL	LSIC
	Climatological seasonal	Composite seasonal
Boundary Condition	cycle of SIC, SST during 1979-2014	cycle of SIC, SST in the Arctic Ocean during low years of BK SIC.