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OFEN - Key Role of the Ocean Western
a) Baroclinicity at 925hPa: b) Storm-tracks at 250hpa: & U9>0hPa, E-Zector arid U250hPa: Boundary curr?nts In Sha.plng the
BeF -NTF Northern Hemisphere climate

The transient eddies, eddy-driven jet and storm tracks
are very important ingredients for the blocking dynamics

SST-fronts maintain the eddy-driven jet and storm-track
by maintaining low-level atmospheric baroclinicity (or
| temperature gradient), which is transferred from the
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a) Low level dT/dt and -d(dT/dt)/dy due to  b) Low level dT/dt and -d(dT/dt)/dy due to oceant h rou g h tur b u | ent h eat ﬂ uxes.

sensible heat flux: BCF - NF horizontal T-advection: - NFBCF

Question: How the Atlantic and Pacific SST-fronts includin
tropical SST-assymery impact the wintertime North
Atlantic blocking frequency?
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Blocking detection

. * Blocking refers to a warm-core anticyclone remaining quasi-stationary
throughout the extratropical troposphere for minimum of 4-5 days

* Its frequently triggers extreme weather events, such as prolonged cold spells,
heat waves, droughts and floods

* Computation
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* the gradients over 15 degrees of latitude, with
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* Blocking region should be larger than 1x106 km? and the event should persist at
least 4 days




DJF-mean blocking frequency
NCEP-NCAR reanalysis (1950-2009 climatology)

Pacific blocking

Greenland

blocking Ural blocking

Euro-Atlantic blocking

1 2 3 4 5 6 7 8 9 10




Experiments setup using MAECHAMS5 model

a) SST and SST-gradient: NF-experiment (ZUNF)

b) SST and SST-gradient: BCF-experiment
(EXT_ALL)

Omrani et. al 2019

Cheung et al. 2023

b) SST-gradient: and zonal tropical SST-asymmetry
(FULL)
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c) Zonally averaged SST-gradient in NF-, ASF- and PSF-experiments
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Experiments setup

Table 1. List of semi-idealised atmospheric-only experiments.

m Tropical SST Extratropical Atlantic SST Extratropical Pacific SST

Zonally uniform tropical SST/No
front (ZUNF, NF). Zonally Uniform No front No front

Realistic SST forcing in Northern
Hemisphere and tropics (FULL) Realistic Realistic Realistic

Realistic extratropical SST forcing ) o -
(EXT_ALL) Zonally Uniform Realistic Realistic
Realistic tropical SST forcing o
(TROP_ALL) Realistic No front No front

Realistic extratropical Atlantic SST
forcing (EXT_ATL) Zonally Uniform Realistic No front

Realistic extratropical Pacific SST
forcing (EXT_PAC) Zonally Uniform No front Realistic
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Impact of the extratropical SST-fronts and tropical zonal SST-asymmetry on North

Atlantic blocking frequency (winter)

Climatology of blocking frequency in FULL (shading) and NCEP (contour)
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Blocking frequency: (a) climatology, (b)-(f) response (shading) and climatology in ZUNF (contour)
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* Without the SST-front and tropical SST-asymmetry, e o totziaioten e N
the primary blocking center shifts from Euro Atlantic %% """
into Greenland

(d) response to tropical SST
A °e

« Combined effect of the midlatitude North Atlantic and * vy «
Pacific SST-fronts largely improve the blocking
frequency. The tropical SST-asymmetry acts to
improve the blocking frequency further.

* Both Atlantic and Pacific SST-fronts are required. EEEEEE R R
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Midlatitude oceanic SST-front can influence the blocking
frequency by affecting

(1) the dynamics of individual blocking events
(2) the background storm-track activity
(3) the overall atmospheric circulation.




Impact on the dynamics of individual blocking events
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» Z500 tendency as function of the vorticity flux divergence, which can be
decomposed into the contribution of the mean stateéi) high-frequency
(ii) and low-frequency (iii) transient eddies and cross frequenc
component (iv) reflecting the non-linear interaction between the low
and the high frequency eddies




Dynamics of the individual Euro-Atlantic blocking events (Winter)

Euro-Atlantiic. Z500 (Contour) and Z500-tendency (shading)
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Dynamics of the individual Euro-Atlantic blocking events (Winter)

(a) FULL (b) With two ocenanic fronts
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Dynamics of the individual Greenland blocking events (Winter)

Pattern projects on negative NAO.
Tendency show southwest-northeast
shifted ridge-trough-ridge wave train
system

Greenland clocking. Z500 (Con.), its tendency (shad.)
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* Both low and high frequency eddies are
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dz/dt (m/day)

dzZ/dt (m/day)

Dynamics of the individual Greenland blocking events (Winter)

(a) FULL

(b) With two ocenanic fronts
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North Atlantic midlatitude oceanic fronts
play a dominant role for the synoptic-scale
forcing, whereas the low-frequency
forcing is contributed by both Atlantic and
Pacific SST-fronts (not shown).
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SST-front impact (on Greenland blocking) via the storm track and eddy-driven jet

(Winter)

Storm-track activity: response (shading) and climatology in ZUNF (contour)  250-hPa zonal wind and 8-day high-pass filtered E-vector

(a) response to Atlantic oceanic front (a) response to Atlantic oceanic front
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(c) response to two oceanic fronts
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* The strengthening of the storm-track and eddy-driven jet are associated
with low-pressure over Greenland that favorizes a reduced blocking
frequency over Greenland

Bjerknes Centre
for Climate Rese:



SST-front impact (on Euro-Atlantic blocking) via storm-track and ridge downstream

Winter

250-hPa eddy geopotential height and Plumb flux

(a) response to Atlantic oceanic front
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(b) response to Pacific oceanic front
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* The combined effect of the storm-track and ridge
downstream favorize the development of Euro-Atlantic
blocking.
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Impact of SST-fronts on the wintertime North Atlantic Blocking:

* The SST-fronts and tropical SST-asymmetry improve the wintertime
North Atlantic blocking frequency with the joint impact of the
Atlantic and Pacific SST-front playing crucial role

* The Pacific SST-front reinforces the North Atlantic circulation storm
track, eddy-driven jet and ridge in Europe, which favors the shift of
primary blocking center from greenling into Euro Atlantic region
making the blocking frequency realistic .

*The enhanced interaction between storm tacks and the European
ridge in response to the join impact of Atlantic and Pacific SST-fronts
favors the occurrence of Euro-Atlantic blocking.

* The strengthening of the Atlantic eddy-driven jet and storm tacks in
response to join impact of Atlantic and Pacific SST-front reduces the

Greenland blocking frequency (geostrophic balance).
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