

Pacific Oceanic Front Amplifies the Impact of Atlantic Oceanic Front on North Atlantic Blocking

Nour-Eddine Omrani, Ho Nam Cheung, Fumiaki Ogawa, Noel Kennlyside, Hisashi Nakamura, Wen Zhou

www.nature.com/npjclimatsci

ARTICLE OPEN Check for updates Pacific oceanic front amplifies the impact of Atlantic oceanic front on North Atlantic blocking

2019)

SCIENTIFIC REPORTS

OPEN Key Role of the Ocean Western Boundary currents in shaping the Northern Hemisphere climate

The transient eddies, eddy-driven jet and storm tracks are very important ingredients for the blocking dynamics

SST-fronts maintain the eddy-driven jet and storm-track by maintaining low-level atmospheric baroclinicity (or temperature gradient), which is transferred from the ocean through turbulent heat fluxes.

Question: How the Atlantic and Pacific SST-fronts includin tropical SST-assymery impact the wintertime North Atlantic blocking frequency?

-4.2 -2.8 -1.4 0 1.4 2.8 4.2

Blocking detection

- Blocking refers to a warm-core anticyclone remaining quasi-stationary throughout the extratropical troposphere for minimum of 4-5 days
 - Its frequently triggers extreme weather events, such as prolonged cold spells, heat waves, droughts and floods

Computation

•
$$GHGN(\lambda, \varphi_0, t) = \frac{Z_{500}(\lambda, \varphi_N, t) - Z_{500}(\lambda, \varphi_0, t)}{\varphi_N - \varphi_0} < -10 \text{ gpm}$$

• $GHGS(\lambda, \varphi_0, t) = \frac{Z_{500}(\lambda, \varphi_0, t) - Z_{500}(\lambda, \varphi_S, t)}{\varphi_0 - \varphi_S} > 0 \text{ gpm}$

- the gradients over 15 degrees of latitude, with $\varphi_N \epsilon$ [50,90]° $N, \varphi_0 \epsilon$ [35,75]° $N, \varphi_S \epsilon$ [20,60]°N
- Blocking region should be larger than 1×10^6 km² and the event should persist at least 4 days

Blocking frequency in NCEP

DJF-mean blocking frequency NCEP-NCAR reanalysis (1950-2009 climatology)

Experiments setup using MAECHAM5 model

b) SST and SST-gradient: BCF-experiment a) SST and SST-gradient: NF-experiment (ZUNF)

(EXT_ALL)

Omrani et. al 2019 Cheung et al. 2023

°C

Experiments setup

 Table 1. List of semi-idealised atmospheric-only experiments.

Experiment	Tropical SST	Extratropical Atlantic SST	Extratropical Pacific SST
Zonally uniform tropical SST/No front (ZUNF, NF).	Zonally Uniform	No front	No front
Realistic SST forcing in Northern Hemisphere and tropics (FULL)	Realistic	Realistic	Realistic
Realistic extratropical SST forcing (EXT_ALL)	Zonally Uniform	Realistic	Realistic
Realistic tropical SST forcing (TROP_ALL)	Realistic	No front	No front
Realistic extratropical Atlantic SST forcing (EXT_ATL)	Zonally Uniform	Realistic	No front
Realistic extratropical Pacific SST forcing (EXT_PAC)	Zonally Uniform	No front	Realistic

Bjerknes Centre

Impact of the extratropical SST-fronts and tropical zonal SST-asymmetry on North Atlantic blocking frequency (winter)

- Without the SST-front and tropical SST-asymmetry, the primary blocking center shifts from Euro Atlantic into Greenland
- Combined effect of the midlatitude North Atlantic and Pacific SST-fronts largely improve the blocking frequency. The tropical SST-asymmetry acts to improve the blocking frequency further.
- Both Atlantic and Pacific SST-fronts are required.

Midlatitude oceanic SST-front can influence the blocking frequency by affecting

- (1) the dynamics of individual blocking events
- (2) the background storm-track activity
- (3) the overall atmospheric circulation.

Impact on the dynamics of individual blocking events

$$\bullet \frac{\partial Z_{500}}{\partial t} \approx -\frac{f}{g} \nabla^{-2} \left(\nabla_{H} \cdot (V\xi_{a}) \right)$$

$$\nabla_{H} \cdot (V\xi_{a}) = -\nabla_{H} \cdot \left(\overline{V}\overline{\xi_{a}} \right) - \nabla \cdot (V'_{HP}\xi'_{HP}) - \nabla_{H} \cdot \left(\overline{V}\xi'_{HP} + V'_{HP}\overline{\xi_{a}} \right)$$

$$\underbrace{ -\nabla_{H} \cdot (V'_{LP}\xi'_{LP}) - \nabla_{H} \cdot \left(\overline{V}\xi'_{LP} + V'_{LP}\overline{\xi_{a}} \right) - \nabla_{H} \cdot (V'_{HP}\xi'_{LP} + V'_{LP}\xi'_{HP}) }_{(iii)}$$

$$\underbrace{ -\nabla_{H} \cdot (V'_{LP}\xi'_{LP}) - \nabla_{H} \cdot \left(\overline{V}\xi'_{LP} + V'_{LP}\overline{\xi_{a}} \right) - \nabla_{H} \cdot (V'_{HP}\xi'_{LP} + V'_{LP}\xi'_{HP}) }_{(iv)}$$

 Z500 tendency as function of the vorticity flux divergence, which can be decomposed into the contribution of the mean state (i) high-frequency (ii) and low-frequency (iii) transient eddies and cross frequency component (iv) reflecting the non-linear interaction between the low and the high frequency eddies

Dynamics of the individual Euro-Atlantic blocking events (Winter)

Euro-Atlantiic. Z500 (Contour) and Z500-tendency (shading)

Euro-Atlantic Blocking:

 Pattern and tendency at lag -1 are similar to Scandinavian blocking regime with west east wave train showing pronounced trough in the North Atlantic and ridge in the North Euro-Atlantic region

 This trough ridge system is maintained by both high and low ⁶ frequency eddies

Dynamics of the individual Euro-Atlantic blocking events (Winter)

low-pass cross-scale High- frequency eddy-forcing is mainly contributed by Atlantic oceanic fronts, whereas low-frequency eddy-forcing of Euro-Atlantic blocking is due to the joint effect of the Atlantic and Pacific oceanic fronts (not shown).

Dynamics of the individual Greenland blocking events (Winter)

- Pattern projects on negative NAO.
- Tendency show southwest-northeast shifted ridge-trough-ridge wave train system

• Both low and high frequency eddies are important

Dynamics of the individual Greenland blocking events (Winter)

low-pass cross-scale North Atlantic midlatitude oceanic fronts play a dominant role for the synoptic-scale forcing, whereas the low-frequency forcing is contributed by both Atlantic and Pacific SST-fronts (not shown).

SST-front impact (on Greenland blocking) via the storm track and eddy-driven jet (Winter)

(a) response to Atlantic oceanic front

Storm-track activity: response (shading) and climatology in ZUNF (contour)

AtlanticandPacificSST-frontmaintainjointlythestorm-trackandeddy-drivenjet

Bjerknes Centre

 The strengthening of the storm-track and eddy-driven jet are associated with low-pressure over Greenland that favorizes a reduced blocking frequency over Greenland

SST-front impact (on Euro-Atlantic blocking) via storm-track and ridge downstream (Winter)

250-hPa eddy geopotential height and Plumb flux

- For the Euro-Atlantic blocking, we need not only migratory cyclone (storm tracks), but also quasi-stationary ridge downstream that act to block the downstream migration of storms into Europe.
- Atlantic and Pacific SST-front maintain jointly not only the storm-track activities but also the quasi-stationary ridge downstream, where the contribution of the Pacific SST-front is higher.
- The combined effect of the storm-track and ridge downstream favorize the development of Euro-Atlantic
 blocking.

Conclusions

Impact of SST-fronts on the wintertime North Atlantic Blocking:

- The SST-fronts and tropical SST-asymmetry improve the wintertime North Atlantic blocking frequency with the joint impact of the Atlantic and Pacific SST-front playing crucial role
- The Pacific SST-front reinforces the North Atlantic circulation storm track, eddy-driven jet and ridge in Europe, which favors the shift of primary blocking center from greenling into Euro Atlantic region making the blocking frequency realistic.
- The enhanced interaction between storm tacks and the European ridge in response to the join impact of Atlantic and Pacific SST-fronts favors the occurrence of Euro-Atlantic blocking.
- The strengthening of the Atlantic eddy-driven jet and storm tacks in response to join impact of Atlantic and Pacific SST-front reduces the Greenland blocking frequency (geostrophic balance).

- Omrani, N. E., Ogawa, F. & Nakamura, H. et al. Key role of the ocean western boundary currents in shaping the Northern Hemisphere climate. *Sci. Rep.* **9**, 3014 (2019).
- Cheung H N, Omrani N E, Ogawa F, Keenlyside N, Nakamura H, Zhou W. 2023. Pacific oceanic front amplifies the impact of Atlantic oceanic front on North Atlantic blocking. NPJ Clim Atmos Sci, 6: 61

