STORM SWAMP: A KEY REGION FOR CONCURRENT BLOCKING AND HEAT WAVE EVENTS WITH

QUASI-STATIONARY ROSSBY WAVES AMPLIFICATION

US CLIVAR Workshop on Blocking and Extreme Weather in a Changing Climate, 2024

Valentina Castañeda, Lei Wang Earth, Atmospheric and Planetary Sciences Purdue University

1 03/18/2024 Weather and Climate Dynamics Laboratory

INTRODUCTION: ROSSBY WAVES, BLOCKING AND HEATWAVES

AMPLIFIED ROSSBY WAVES AND **EXTREME HEAT**:

ROSSBY WAVES AND **BLOCKING EVENTS:**

RWP anomalous amplitude during extreme heat

HEATWAVES AND BLOCKING DETECTION

BLOCKING:

At least 5 consecutive days following:

- 1. LWA to identify strong wave events
- 2. Pass through LWA threshold
- 3. Track wave events with max point
- 4. Max. distance: 10° lon and 5° lat.

From *Martineau et al. 2017*

HEATWAVES:

At least 5 consecutive days following:

- 1. More than 5% of US has daily surface air temperature exceeding a **threshold**
- 2. Track wave events with max point
- 3. Max. distance: 5° lon and 5° lat.

From *Teng et al. 2013*

BLOCKING AND HEATWAVES FROM REANALYSIS

Blocking events preceding or concurring with heatwaves

Blocking events during JJA

Castañeda and Wang (in prep.)

BLOCKING AND HEATWAVES FROM REANALYSIS

Castañeda and Wang (2024)

First day of heatwaves

BLOCKING AND HEATWAVES FROM REANALYSIS

METHODS: RWP DIAGNOSIS

Rossby wave packet envelope

RWP amplitude

Example from Fragkoulidis, 2020

$$A_{v'_{\ell}} = |A_{v'_{\lambda}}| e^{i\operatorname{Arg}\{A_{v'_{\ell}}\}} = E_{\ell} e^{i\Phi_{v'_{\ell}}}$$
$$E_{\ell} = |A_{v'_{\ell}}|$$
$$\operatorname{Zimin}_{\ell} 2003$$

- Phase speed
- Group velocity

$$c_p = rac{\omega_{v_\ell'}}{k_{v_\ell'}},$$

where
$$\omega_{v'_{\ell}} = -\frac{\partial \Phi_{v'_{\ell}}}{\partial t}$$
, and

$$k_{v_{\ell}'} = \frac{1}{a \cos\phi} \frac{\partial \Phi_{v_{\ell}'}}{\partial \lambda}.$$

Fragkoulidis, 2019

Waveguide

$$q = eta y + rac{d_g}{dt} = rac{d}{d}$$

Quasi-geostropic Potential Vorticity

$$\frac{d_1}{dt}q = 0$$

RWP PRECEDING THE EVENTS

Castañeda and Wang (in prep.)

DIFFERENCE

180°

-2.1 -1.4 -0.7 0.0 0.7 1.4 2.1 [m/s]

RWP PRECEDING THE EVENTS

DIFFERENCE

180°

-2.1 -1.4 -0.7 0.0 0.7 1.4 2.1 [m/s]

□ What is the role of basic states providing favorable dynamic conditions for high-amplitude RWPs on blocking and heatwaves statistics?

HEATWAVES VS. NON HEATWAVES

Gradient of QGPV (waveguide)

HEATWAVES VS. NON HEATWAVES

Gradient of QGPV (waveguide)

DATA AND METHODS: MODEL

Dry dynamical core proposed by Held and Suarez, 1994.

• Idealized model: No diurnal cycles, no seasonal cycles, no topography

Isolates the dry dynamics

DATA AND METHODS: EXPERIMENTS

Dry dynamical core proposed by Held and Suarez, 1994.

BASIC STATES - EXPERIMENTS

BASIC STATES - EXPERIMENTS

Very fast propagation \Box not optimal for providing conditions for heatwaves

RESULTS: HEATWAVES AND BLOCKING FROM THE EXPERIMENTS

Blocking events preceding or concurring with heatwaves:

Perpetual Non Heatwaves

No events

Perpetual Heatwaves

RESULTS: HEATWAVES AND BLOCKING FROM THE EXPERIMENTS

Blocking events preceding or concurring with heatwaves:

Perpetual Heatwaves

Dry core resemble the concurrence and location of heatwaves and blocking events

Castañeda and Wang (in prep.)

Wavenumber 5 Lower Cp and Cg **Amplified RWP**

HEATWAVES VS. NON HEATWAVES

Gradient of QGPV (waveguide)

Weaker waveguides

HEATWAVES VS. NON HEATWAVES

Gradient of QGPV (waveguide)

"Swamp" of the storm track: reduction of the PV gradients (no waveguide)

Hövmoller diagram for the **phase speed**:

03/18/2024 Weather and Climate Dynamics Laboratory

27

First day of heatwaves

Hövmoller diagram for the **phase speed**:

03/18/2024 Weather and Climate Dynamics Laboratory 28

Castañeda and Wang (in prep.)

- Nakamura & Huang, 2018.

First day of heatwaves

SUMMARY

1. The background state during heat waves days is characterized by weaker QGPV gradients at preferred regions.

- 2. This background state acts as as waveguide for the RWP propagation and formation of the "Storm Swamp"
- 3. The "storm swamp" provides favorable dynamical conditions for blocking and heatwaves in the US
 - Amplified RWPs
 - Reduced phase speed
- 4. The dry dynamics are able to reproduce the heatwaves, blocking events and the fundamental mechanism