Duration and size of blocking events: Future changes and impacts on weather extremes

Pedram Hassanzadeh¹, Ebrahim Nabizadeh² & Sandro Lubis³ ¹University of Chicago, ²VERSIK Analytics, ³PNNL

Blocking events can drive or exacerbate weather extremes How will blocking events change as climate warms?

2021 Pacific North-West heat wave

1500 deaths \$9B loss

Movies: ERA5 reanalysis data

2017

Check for updat

ARTICLE 1ttps://doi.org/10.1038/s41467-020-17130-

Effects of climate change on the movement of future landfalling Texas tropical cyclones

Pedram Hassanzadeh 3, 220, Chia-Ying Lee³, Ebrahim Nabizadeh 3, Suzana J. Camargo 3, Ding Ma 4 & Laurence Y. Yeungo²

Changes in key characteristics of blocking events Connections between these characteristic and those of extreme events?

Key blocking characteristics:

- Frequency
- Size
- Duration
- Intensity
- 3D structure
- Location ...

Key extreme events' characteristics?

- Blocking-extreme event relationship

Change in blocking *frequency* in a warming climate? Frequency will generally decrease but there are high uncertainties and index/GCM dependency

Woollings et al. (2018, Curr. Clim. Change Rep.)

CMIP5 multi-model-mean RCP 8.5

2061-2090 (Future) period vs. 1961–1990 (Historical) period

Dots: less than two thirds of the models displaying the same sign

Change in blocking *frequency* in a warming climate? Fewer blocks may not mean fewer heat waves: blocking-heat wave relationship may change too!

Geophysical Research Letters 2019

Evaluating Indices of Blocking Anticyclones in Terms of Their Linear Relations With Surface Hot Extremes

Pak-Wah Chan¹, Pedram Hassanzadeh², and Zhiming Kuang^{1,3}

¹Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA, ²Department of Mechanical Engineering, and Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, TX, USA, ³John

"There are several examples supporting changing relationships between blocking and its impacts."

Woollings et al. (2018, Curr. Clim. Change Rep.) ARTICLE OPEN Heatwave-blocking relation change likely dominates over decrease in blocking frequency under global warming

Pak Wah Chan ^{[01 ⊠}, Jennifer L. Catto ^{[01} and Matthew Collins ^{[01}]

"Over Europe, with a historical heatwave frequency of 2.5%, less blocking will cause 0.6% fewer heatwaves, steepened heatwave-blocking relation will cause 1.4% more heatwaves"

Changes in key characteristics of blocking events Connections between these characteristic and those of extreme events?

Key blocking characteristics:

- Frequency
- Size
- Duration
- Intensity
- 3D structure
- Location ...

Key extreme events' characteristics?

- Blocking-extreme event relationship

Change in blocking *size* in a warming climate? Size: area, spatial extent

Larger block → More impactful block

- Larger heat waves (?)
- Increase in mixing length (?)

Z500 anomaly [m]

Geophysical Research Letters 2019

RESEARCH LETTER 10.1029/2019GL084863

Key Points:

- Stze of blocking events robustly increases with climate change in most regions in two sets of large-ensemble fully coupled GCM stmulations
- A scaling law for blocking area is derived in a QG model using

Size of the Atmospheric Blocking Events: Scaling Law and Response to Climate Change

Ebrahim Nabizadeh¹, Pedram Hassanzadeh^{1,2}, Da Yang^{3,4}, and Elizabeth A. Barnes⁵

¹Department of Mechanical Engineering, William Marsh Rice University, Houston, TX, USA, ²Department of Earth, Environmental and Planetary Sciences, William Marsh Rice University, Houston, TX, USA, ³Department of Land, Air and Water Resources, University of California, Davis, CA, USA, ⁴Lawrence Berkeley National Laboratory, Berkeley, CA, USA, ⁵Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA Change in blocking *size* in a warming climate? Using large-ensemble simulations from comprehensive GCMs

Two large-ensemble fully coupled GCM datasets: NCAR's large-ensemble CESM1 (LENS): 40 members per period GFDL's large-ensemble CM3 (CM3-LE): 20 members per period

Current period: Historical (1979-2005) Future period: RCP8.5 (2074-2100)

Blocking index (Dole-Gordan): Z500 anomaly \geq 1.5 standard deviation for \geq 7 days

Blocking area:

Computed daily area inside closed 1 standard deviation contourline

Blocking events are getting bigger with climate change! Larger increases in Northern Hemisphere summer

	Sector	Change in blocking area	
		LENS	CM3-LE
ummer	North Atlantic	+8%	+10%
	North Pacific	+10%	+13%
	Russia	+10%	+11%
S	Southern Hemisphere	-3%	0%
Winter	North Atlantic	+3%	+1%
	North Pacific	+4%	+10%
	Russia	+4%	+5%
	Southern Hemisphere	+2%	+6%

Scaling for the *size* of midlatitude features? Synoptic eddies: Rossby deformation radius or Rhines scales

Two-layer QG: Stone (1969); Panetta (1993); Held & Larichev (1996)

Idealized dry GCMs: Schneider & Walker (2006); Kidston et al. (2011); Jansen & Ferrari (2012); Chemke & Kaspi 2016; Chan et al. (2022)

Idealized moist GCMs: Frierson et al. (2006); O'Gorman & Schneider (2008)

Rossby deformation radius: $\lambda = 2\pi \frac{NH}{f}$

Rhines scale:
$$L_R = 2\pi \sqrt{\frac{u_{rms}}{\beta}}$$

Hierarchical Modeling

Held (2005 BAMS) Jeevanjee et al. (2017 JAMES)

Two-layer quasi-geostrophic (QG) model There are 7 parameters

$$\frac{\partial q_n}{\partial t} + J(\psi_n, q_n) = -\frac{(-1)^n}{\tau_d} \frac{\psi_1 - \psi_2 - \psi_R}{\lambda^2} - \delta_{n2} \frac{\nabla^2 \psi_n}{\tau_f}$$

n = 1,2

$$q_n = \nabla^2 \psi_n (-1)^n \frac{\psi_1 - \psi_2 - \psi_R}{\lambda^2} + \beta y$$

$$\frac{\partial \psi_R}{\partial y} = -\boldsymbol{U}\operatorname{sech}^2(\boldsymbol{y}/\boldsymbol{\sigma})$$

Systematic dimensional analysis: Buckingham- π Theorem (Buckingham 1915 PRL)

All parameters (7): λ , U, σ , β , τ_d , τ_f , L_x Fundamental dimensions (2): time & lengt

The system can be fully described by 7-2= Length: λ Time: λ/U

$$\frac{A}{\lambda^2} \sim \left[\frac{\beta\lambda^2}{U}\right]^a \left[\frac{\sigma}{\lambda}\right]^b \left[\frac{U\tau_d}{\lambda}\right]^c \left[\frac{U\tau_f}{\lambda}\right]^d \left[\frac{L_x}{\lambda}\right]^f$$

Scaling law based on the common use of Buckingham- π Theorem works well

But involves variables that are hard to diagnose from data

$$\frac{A}{\lambda^2} \sim \left[\frac{\beta \lambda^2}{U}\right]^{-0.77} \left[\frac{\sigma}{\lambda}\right]^{0.70} \left[\frac{U\tau_f}{\lambda}\right]^{0.15} \left[\frac{U\tau_d}{\lambda}\right]^{-0.10} \left[\frac{L_x}{\lambda}\right]^{0.10}$$

$$\frac{L_R}{\lambda} \sim \left[\frac{\beta \lambda^2}{U}\right]^{-0.52} \left[\frac{\sigma}{\lambda}\right]^{0.33} \left[\frac{U\tau_f}{\lambda}\right]^{0.20} \left[\frac{U\tau_d}{\lambda}\right]^{-0.10} \left[\frac{L_x}{\lambda}\right]^{0.01}$$

$$\frac{w}{\lambda} \sim \left[\frac{\beta\lambda^2}{U}\right]^{-0.61} \left[\frac{\sigma}{\lambda}\right]^{0.38} \left[\frac{U\tau_f}{\lambda}\right]^{-0.09} \left[\frac{U\tau_d}{\lambda}\right]^{-0.02} \left[\frac{L_x}{\lambda}\right]^{-0.01}$$

$$\frac{L_K}{\lambda} \sim \left[\frac{\beta\lambda^2}{U}\right]^{-0.29} \left[\frac{\sigma}{\lambda}\right]^{0.27} \left[\frac{U\tau_f}{\lambda}\right]^{0.22} \left[\frac{U\tau_d}{\lambda}\right]^{-0.11} \left[\frac{L_x}{\lambda}\right]^{0.01}$$

 $A \sim w L_k \left[\frac{L_x}{\lambda}\right]^{0.10}$

The new scaling law works well in QG

Involves variables that can be diagnose from data

The new scaling law works well in Held-Suarez idealized GCM

Idealized dry GCM: GFDL dry dynamical core T85 resolution Aquaplanet

The scaling wall works well (overall) in winters RCP8.5 vs Historical

Sector				
	Area	W		
North	+3%	-6%	+6%	-1%
Atlantic	1%	+5%	0%	+4%
North Pacific	+4%	+2%	+3%	+4%
	+10%	+4%	+4%	+8%
Russia	+4%	+3%	+1%	+3%
	+5%	+4%	+2%	+5%
Southern	+2%	-2%	+5%	+2%
Hemisphere	+6%	-2%	+7%	+5%

The scaling law does not work in summers RCP8.5 vs Historical

Sector				
	Area	W		
North	+8%	+8%	+2%	+9%
Atlantic	+10%	+4%	+12%	+16%
North Pacific	+10%	?	-8%	?
	+13%	+6%	-5%	1%
Russia	+10%	-3%	-2%	-5%
	+11%	-2%	0%	-2%
Southern	-3%	+2%	+5%	+6%
Hemisphere	0%	+13%	+6%	+20%

Experiments with MiMA (aquaplanet, with seasonal cycle) The scaling law works well in winters but does not work in summers

Change in blocking *duration* in a warming climate? Using large-ensemble simulations from comprehensive GCMs

NCAR's CESM1 (LENS1): 40 members per period NCAR's CESM2 (LENS2): 50 members per period GFDL's CM3: 20 members per period

Historical period: Historical (1975-2000) Future period: RCP8.5/SSP370 (2075-2100)

Dole & Gordon index: Z500 anomaly > 1.5 standard deviation for \ge 5 days

Scherrer et al. index: Reversal of Z500 meridional gradient for \geq 5 days

~20% slower summertime jet stream in a warming climate Would lead to longer blocking and extreme events (?)

Shading: Response of 250 mb zonal winds

No change in average blocking duration under climate change Robust w.r.t. region, season, land vs ocean, index, other studies, model hierarchy

Sector	Average duration of <i>long</i> blocks (days) Historical vs Future periods	
	LENS2	CM3-LE
North Atlantic	11.4 vs 11.3	12.1 vs 12.2
North Pacific	11.6 vs 11.4	12.0 vs 12.2
Russia	11.9 vs 11.4	11.9 vs 12.5
North Atlantic	11.8 vs 12.0	12.1 vs 12.1
North Pacific	12.5 vs 12.3	13.4 vs 14.0
Russia	12.1 vs 12.1	12.5 vs 12.7

Same conclusion:

- for all blocks (+5 days)

- another index

 other studies using CMIP3 & 5 (Barnes et al. 2012 Clim. Dyn.; Dunn-Sigouin & Son 2013 JGR; Huguenin et al. 2020 GRL)

No change in average blocking duration under climate change Idealized dry & moist GCMs isolate the role of large-scale atmospheric circulation

Average blocking duration in the 1D traffic jam model Provides a quantitative framework for the eddy-blocking feedback

A(x, t): finite-amplitude wave activity x: longitude Nakamura & Huang (2018 Science) Parasdise et al. (2019 JAS) Valva & Nakamura (2021 JGR)

Average blocking duration in the 1D traffic jam model No change IF the relationship between mean flow & eddies is accounted for

No change in the average blocking duration under climate change Due to proportional change of the mean jet speed and eddy feedback

One implication:

Increase in duration of future midlatitude heat waves is not directly due to dynamics (so, it is due to thermodynamics)

Li & Thompson (2021 Nature):

Increase in duration of future heat waves can be mainly explained by thermodynamics *Major source of uncertainty: changes in blocking duration*

Chan et al. (2023, npj Climate & Atmos. Sci.): Heat wave-blocking relationship changes Zhang & Boos (2023, PNAS): Convective instability sets max midlatitude temperature Change in blocking *structure & intensity* in a warming climate? Analysis of ERA5 and model hierarchy, T tendency equation budget

15 DECEMBER 2021

NABIZADEH ET AL.

The 3D Structure of Northern Hemisphere Blocking Events: Climatology, Role of Moisture, and Response to Climate Change®

EBRAHIM NABIZADEH,^a SANDRO W. LUBIS,^a AND PEDRAM HASSANZADEH^a

^a Rice University, Houston, Texas

- Latent heating plays a role in setting the 3D structure (e.g., creating a westward tilt)
- Vertical wind structure: complicated
- Blocking intensity response-land temperature anomaly do not always have the same sign

32

Changes in key characteristics of blocking events

Connections between these characteristic and those of extreme events?

Key blocking characteristics:

- Frequency
- Size
- Duration
- 3D structure
- Location ...

Key extreme events' characteristics?

- Model/data hierarchy Large ensembles to 1D traffic-jam model

- Scaling laws: blocks & extreme events Accelerated with ML?

- Integrated conceptual models Blocking + extreme event

- Blocking-extreme event relationship

Hierarchical modeling for blocking events

Effects of blocking size on size/impact of extreme events?

LETTER

OPEN ACCESS

Projected increase in the spatial extent of contiguous US summer heat waves and associated attributes

REC EIVED

22 February 2019

REVISED

3 October 2019

ACCEPTED FOR PUBLICATION 4 October 2019

PUBLISHED

8 November 2019

Bradfield Lyon^{1,5}, Anthony G Barnston², Ethan Coffel³ and Radley M Horton⁴

- ¹ Climate Change Institute and School of Earth and Climate Sciences, University of Maine, Orono, ME, United States of America
- ² The Earth Institute, Columbia University, New York, NY, United States of America

³ Neukom Institute and Department of Geography, Dartmouth College, Hanover, NH, United States of America

- ⁴ Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, United States of America
- ⁵ Author to whom any correspondence should be addressed.

