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Blocking events can drive or exacerbate weather extremes
How will blocking events change as climate warms?
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Changes in key characteristics of blocking events
Connections between these characteristic and those of extreme events?

Key blocking characteristics:
Frequency

Size

Duration

Intensity

3D structure

Location ...

Key extreme events’ characteristics?
- Blocking-extreme event relationship



Change in blocking frequency in a warming climate?
Frequency will generally decrease but there are
high uncertainties and index/GCM dependency

Woollings et al. (2018, Curr. Clim. Change Rep.)
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Change in blocking frequency in a warming climate?
Fewer blocks may not mean fewer heat waves: blocking-heat wave

relationship may change too! EUTIDE; NotEStHs AN
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Change in blocking size in a warming climate?
Size: area, spatial extent

NQOAA/ESRL Physical Sciances Division

Larger block —»
More impactful block

- Larger heat waves (?)
- Increase in mixing length

(?)

Z500 anomaly [m]

Geophysical Research Letters 2019
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Change in blocking size in a warming climate?
Using large-ensemble simulations from comprehensive GCMs

Two large-ensemble fully coupled GCM datasets:
NCAR's large-ensemble CESM1 (LENS): 40 members per period
GFDL’s large-ensemble CM3 (CM3-LE): 20 members per period

Current period: Historical (1979-2005)
Future period: RCP8.5 (2074-2100)

Blocking index (Dole-Gordan):
Z500 anomaly = 1.5 standard deviation
for > 7 days

Blocking area:
Computed daily area inside closed 1 standard deviation
contourline




Blocking events are getting bigger with climate change!
Larger increases in Northern Hemisphere summer
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Scaling for the size of midlatitude features?
Synoptic eddies: Rossby deformation radius or Rhines scales

Wwvo-layer QG: Stone (1969); Panetta (1993); Held & Larichev (1996)

Idealized dry GCMs: Schneider & Walker (2006); Kidston et al. (2011); Jansen & Ferrari (2012);
Chemke & Kaspi 2016; Chan et al. (2022)

Idealized moist GCMs: Frierson et al. (2006); O'Gorman & Schneider (2008)

Rossby deformation radius: 4 = 2m

f
Rhines scale: L = 21 /urﬁ"w
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Hierarchical Modeling

Held (2005 BAMS)
Jeevanjee et al. (2017 JAMES)
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Hierarchical Modeling

Held (2005 BAMS)
Jeevanjee et al. (2017 JAMES)
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large-ensembles
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Two-layer quasi-geostrophic (QG) model
There are 7 parameters
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Systematic dimensional analysis:
Buckingham-z Theorem (Buckingham 1915 PRL)

All parameters (7): 1,U, 0, 5,74, T, Ly
Fundamental dimensions (2): time & lengt f

The system can be fully described by 7-2=

Length: A
Time: A/U

A~ G ) L
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Scaling law based on the 10f ke 20 | | |
common use of QG model

Buckingham-z Theorem
works well 2|

But involves variables that are

hard to diagnose from data 1ol
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The new scaling law
works well in QG

Involves variables that
can be diagnose
from data
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The new scaling law
works well in Held-Suarez

idealized GCM

|dealized dry GCM:

GFDL dry dynamical core
T85 resolution

Aquaplanet
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The scaling wall works well (overall) in winters
RCP8.5 vs Historical
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The scaling law does not work in summers
RCP8.5 vs Historical
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Hierarchical Modeling

Held (2005 BAMS)
Jeevanjee et al. (2017 JAMES)

L 0.1
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®
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Experiments with MiMA (aquaplanet, with seasonal cycle)
The scaling law works well in winters but does not work in summers
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Change in blocking duration in a warming climate?
Using large-ensemble simulations from comprehensive GCMs

NCAR’s CESM1 (LENS1): 40 members per period
NCAR’s CESM2 (LENS2): 50 members per period
GFDL's CM3: 20 members per period

Historical period: Historical (1975-2000)
Future period: RCP8.5/SSP370 (2075-2100)

Dole & Gordon index:
Z500 anomaly > 1.5 standard deviation for = 5 days

Scherrer et al. index:
Reversal of Z500 meridional gradient for = 5 days
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~20% slower summertime jet stream in a warming climate
Would lead to longer blocking and extreme events (?)

Shading: Response of 250 mb zonal winds
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No change in average blocking duration under climate change
Robust w.r.t. region, season, land vs ocean, index, other studies, model hierarchy

Sector Average duration of long blocks (days)
Historical vs Future periods
LENS2 CM3-LE

| -
)
: I R - - oo (5 v
S
11.9 vs 11.4 11.9 vs 12.5 .

North Atlantic 11.8vs 12.0 12.1 vs 12.1 . _
g - other studies using CMIP3 & 5
= D Sigouin & Son 201316
; Dunn-Sigouin & Son 2013 JGR;

uguenin etol. 2020 6L
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Hierarchical Modeling

Held (2005 BAMS)
Jeevanjee et al. (2017 JAMES)

-
MiMA

o® Jucker & Gerber (2017 J. Clim.)
-Held—Suarez dry core

large-ensembles
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No change in average blocking duration under climate change
|dealized dry & moist GCMs isolate the role of large-scale atmospheric circulation
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Hierarchical Modeling

Held (2005 BAMS)
Jeevanjee et al. (2017 JAMES)

MiMA
Jucker & Gerber (2017 J.

Held-Suarez dry core

Nakamura & Huang (2018 Science)

Clim.)

large-ensembles
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Average blocking duration in the 1D traffic jam model
Provides a quantitative framework for the eddy-blocking feedback

0A ’ 0A
ot~ ¥ gx

0
+ laxAz + S(x, t)] + damping + ---

zonal nonlinear transient
advection feedback eddies
A(x, t): finite-amplitude wave activity Nakamura & Huang (2018 Science)

Parasdise et al. (2019 JAS)

x: longitude
Valva & Nakamura (2021 JGR)
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normalized duration

Average blocking duration in the 1D traffic jam model
No change IF the relationship between mean flow & eddies is accounted for
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No change in the average blocking duration under climate change
Due to proportional change of the mean jet speed and eddy feedback

One implication:
Increase in duration of future midlatitude heat waves is not directly due to dynamics
(so, it is due to thermodynamics)

Li & Thompson (2021 Nature):
Increase in duration of future heat waves can be mainly explained by thermodynamics

Major source of uncertainty: changes in blocking duration

Chan et al. (2023, npj Climate & Atmos. Sci.): Heat wave-blocking relationship changes
Zhang & Boos (2023, PNAS): Convective instability sets max midlatitude temperature
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Change in blocking structure & intensity in a warming climate?
Analysis of ERAS and model hierarchy, T tendency equation budget

15 DECEMBER 2021 NABIZADEH ET AL.

The 3D Structure of Northern Hemisphere Blocking Events: Climatology, Role of
Moisture, and Response to Climate Change?

EBRAHIM NABIZADEH," SANDRO W. LUBIS,* AND PEDRAM HASSANZADEH"

 Rice University, Houston, Texas

- Latent heating plays a role in setting the 3D structure (e.g., creating a
westward tilt)

- Vertical wind structure: complicated

- Blocking intensity response-land temperature anomaly do not always have
the same sign



Changes in key characteristics of blocking events
Connections between these characteristic and those of extreme events?

| - Model/data hierarchy

I Large ensembles to 1D traffic-jam model
1

Key blocking characteristics: ! .
I - Scaling laws: blocks & extreme events

) Frequency :Accelerated with ML?
- Size I
. | . .
- Duration | - (Integrated ?) Metrics for blocking
- 3D structure : characteristics U weather extreme
_ Location | characteristics

1
, I - Integrated conceptual models
Key extreme events ' Blocking + extreme event

characteristics? @~ T T T T s s o s s oo ss—— -
- Blocking-extreme event relationship
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Hierarchical modeling
for blocking events

Nakamura & Huang
(2018 Science)

large-ensembles
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Effects of blocking size on size/impact of
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Projected increase in the spatial extent of contiguous US summer
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