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Blocking Diversity: Distinct Roles of Diabatic
Heating
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« Where does diabatic heating (due

\ to moist processes) occur?
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Is diabatic heating playing the

same role in these two types of
%: blocks?
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Future projection of blocking frequency

Future projection of blocking frequency (DJF)

In the warmer climate, blocking frequency
 Decreases at Northwest Pacific and Northwest
Atlantic.

How can we understand this change?

Why blocks response differently across different
regions?



Role of latent heat release in atmospheric blocks
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Importance of latent heat release in ascending air
streams for atmospheric blocking

S. Pfahl™, C. Schwierz?, M. Croci-Maspoli3, C. M. Grams' and H. Wernli’

Atmospheric blocking is a key component of extratropical
weather variability’ and can contribute to various types of
extreme weather events?*. Changes in blocking frequencies
due to Arctic amplification and sea ice loss may enhance
extreme events®’, but the mechanisms potentially involved
in such changes are under discussion®". Current theories
for blocking are essentially based on dry dynamics and do
not directly take moist processes into account’>’’, Here we
analyse a 21-year climatology of blocking from reanalysis data
with a Lagrangian approach, to quantify the release of latent
heat in clouds along the trajectories that enter the blocking
systems. We show that 30 to 45% of the air masses involved
in Northern Hemisphere blocking are heated by more than
2 K—with a median heating of more than 7 K—in the three
days before their arrival in the blocking system. This number

role of wave breaking'® and the isentropic advection of air with
low potential vorticity (PV) into the blocking region'***. All these
theories are essentially based on dry atmospheric dynamics, and
diabatic processes have been considered only in an indirect way,
for example, through the triggering of Rossby waves by tropical
convection®. There are only few studies pointing to direct diabatic
effects on blocking: substantial diabatic contributions to the in-
tensification of two blocking systems in the Southern Hemisphere
have been identified in ref. 20, whereas diabatic effects have been
found to be of secondary importance for blocking formation over
Siberia in ref. 21. Backward trajectory calculations from North
Atlantic blockings during selected winters presented in refs 22,23
indicate that latent heating is often involved in the upward transport
of air with low PV into the upper-tropospheric blocking. In this
study, again a combined PV and Lagrangian approach is used to

he mid-latitude weather variability, but the different processes
lly understood. This study investigates the role that diabatic pro-
ascending airstreams, play in the dynamics and spatio-temporal
dogical analysis. The results show that the formation and (re-)
gating connected to upstream baroclinic developments. While
ten individual blocking events and different regions, in particu-
lly most important during onset and in more intense and larger
ocking life cycle, associated with a series of transient cyclones
fast onset and fluctuation in intensity and size) and low-frequency
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» Moist related diabatic processes are
important, overall exerting a positive
effect on the formation and
intensification of blocks.
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Hypothesis and Method

We hypothesize that:
* The role of diabatic heating (from moist processes) is distinct among different types of blocks.

Ridg Dipole

/ Methods: \

* We use MERRAZ2 reanalysis product from 1980-2022, also CAM simulations with fixed SST.
* We use local wave activity framework to detect different types of blocks:
» Ridge blocks only include anticyclonic local wave activity .
» Dipole block include both cyclonic and anticyclonic local wave activity.
. We use the budget of local wave activity to quantify the contribution from diabatic processes. )




Blocking Diversity (Basic Features)

Ridges and Dipoles
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For ridge blocks:

8 60°N - * Occur downstream to the storm tracks.
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Distinct horizonal structure of diabatic heating
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For ridge blocks:
« Diabatic heating occurs upstream to the block.

For dipole blocks:

« Diabatic heating primarily occurs within the cut
low, South and downstream to the center of

block.



Distinct vertical structure of diabatic heating

Composite Ridge Blocks Composite Dipole Blocks e
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For ridges: For dipoles:
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stabilize the stratification. tends to destabilize the stratification.




From thermodynamics to dynamics contribution

Moisture-induced LWA Tendency Moisture-induced LWA Tendency

Translation from thermodynamics contribution to dynamics contribution:
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From thermodynamics to dynamics contribution

Residual Method (Neal et al.,
2022)
LWA tendency residual
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From thermodynamics to dynamics contribution

We directly calculate the moist-induced LWA tendency based on diabatic
heating

Moist-induced LWA tendency
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Distinct horizonal patterns of moist-induced LWA
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For dipoles:

« Weak intensification at the center. - Strong dampening effect at the center.

« Strong upstream wave activity enhancement
\ (persistence effect) helps to maintain the block. ) )




Distinct vertical pattern of moist-induced LWA tendency
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* The upstream enhancement maximizes on
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For dipoles:

» The dampening effect centers at lower levels,
but can extend to the middle troposphere.

moist



Composite Ridge Blocks

Hovmoller diagram of moist-induced LWA tendency

Composite Dipole Blocks
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« The dampening effect by moist processes
can last throughout the entire blocking




Distribution of dampening/intensification effect

Distribution of domain averaged moist-induced LWA tendency
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/For ridge blocks (1470 events): )
» Block amplitude could be either enhanced
or reduced.
« But the overall changing is relatively weak.
- J
For dipole blocks (784 events):
« Dampening effect is robust for most blocks.

Box: 25" - 75™ interquartile
Whisker: 51" - 95" interquartile



Geographic features of intensification/damping effect
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Dipole Blocks
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Pacific.
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Distribution of persistence effect

Distribution of west-east gradient of moist-induced LWA
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Geographic features of persistence effect
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A new insight to assess the future projection of blocks

Geographic features of dipole blocks
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A new insight to assess the future projection of blocks

Geographic features of ridge blocks
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Role of diabatic heating in ridge blocks
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Increased blocking
frequency at Northeast
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CAM simulation with uniformly increased SST
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For dipoles:
* In a warming climate, we find the

damping effect is reduced.




Two-layer QG model

Rigid topw = 0 D, _,
E(V Y1+ By)—foD =F;
D Vorticity equation
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Conclusion and Discussion

For ridge blocks: For dipole blocks:
- Diabatic heating occurs upstream to the block » Diabatic heating occurs within the cut low (B’)
(A).

» Diabatic heating exerts a strong dampening effect
e Diabatic heating enhances the upstream wave that can directly reduce the amplitude of blocks.
activity, conducive to the persistence of blocks.



Conclusion and Discussion

Future projection of blocking

Role of diabatic heating in dipole
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The distinct geographic features of ridge blocks and dipole blocks, together with distinct roles of diabatic
heating, help to assess the future projection of blocking events.
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