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Increasing Greenland blocking
trend not present in climate
models
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Greenland climate change B ofBeter’

Arctic temperatures In
summer are rising fast.

Greenland ice sheet is melting.
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Summer Greenland blocking trend B ofEeter’

GB2 21-years running mean

— CMIP5 GB2 - NCEP GB1
. CMIP6GB2 —— ERAS5GB2
— NCEP GB2

A positive trend in Greenland blocking identified in
reanalyses was not identified in members from CMIP6
and CMIP5.

JJA Hanna et al. (2014)

This Greenland blocking
trend also evident in

’ |
observations.
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Greenland blocking in climate models @) e

Climate model biases Future trends

Davini et al. (2020)
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2. Are there processes key for
blocking missing in models?
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Results B) i

: Missing decadal variability of summer Greenland

: blocking in climate models

3 J. W. Maddison!, J. L. Catto!, E. Hanna?, L. N. Luu?, J. A. Screen!
IDepartment of Mathematics and Statistics, University of Exeter, UK

5 2Department of Geography, University of Lincoln, UK

6 Key Points:

7 « The observed rapid increase in summertime Greenland blocking during the first

8 decade of the twenty-first century has not continued.

0 « A period of increased summertime Greenland blocking of similar magnitude to ob-

10 served 1s rarely reproduced in a large ensemble of climate models.

11 » Decadal variability in Greenland blocking in climate models is partly driven by

12 SST /sea ice and/or anthropogenic aerosols.



Data and methods B) i

Focus on temporal characteristics of GB in a large ensemble (488 members) of CMIP6 models:

~170 historical simulations.

~140 AMIP simulations.

~70 hist-aer DAMIP simulations.

~70 hist-GHG DAMIP simulations.

~70 hist-nat DAMIP simulations.

~20 hist-1950 HighResMIP simulations.

ldentify blocking using four blocking indices:

1.

GBI2: area-averaged geopotential height at 500 hPa (Z500) in region covering Greenland. Normalised with a hemispheric mean
to eliminate role of background warming.

. Bl ABS: flow reversal index based on Z500, calculated for region between 35— 75N and summed for grid points within

Greenland region.

. Bl ANO: geopotential height anomaly index. Blocked grid points defined as those that have a Z500 anomaly exceeding the

climatological 90th percentile in the region 50—80N.

Bl MIX: a combination of the Bl ABS and Bl ANO indices. At least one grid point identified in a block by Bl ANO must also meet
the flow reversal criteria of Bl ABS.



Greenland blocking time series D of Eotor’

(a) GBI 2 (b) Bl ABS

15 1.5
historical

—— ERA5S

1. The GB trend does not
appear to be a
continued Increase.
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CMIP experiment comparison
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(a) historical
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shows little variation.
2. Can the models simulate a period of increased GB like that seen in ERA5?

1. The ERAS GB time series remains an outlier in all of the experiments considered. The multi-model ensemble mean




CMIP experiment comparison B ofixerer’

(a) historical
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1. The ERAS GB time series remains an outlier in all of the experiments considered. The multi-model ensemble mean
shows little variation.

2. Can the models simulate a period of increased GB like that seen in ERA5?
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(a) historical
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1. The ERAS GB time series remains an outlier in all of the experiments considered. The multi-model ensemble mean
shows little variation.

2. Can the models simulate a period of increased GB like that seen in ERA5?
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(a) GBI 2

historical

The ERAS GB trend is quantified in two ways:
1. The 10-year change in GBI
2. The duration and mean of the positive GBI anomaly

Bl anomaly
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Possible forced response

(a) historical
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1. The ensemble mean time series in the AMIP and hist-aer experiments correlate strongly with ERAS.

2. This suggests a forced response in GB from SST/SICs and/or anthropogenic aerosols which may be too weak in the models.




RPC correction B) i

Individual ensemble members of weather or climate models often contain some predictable signal

but this may be too weak (Eade et al., 2014; Smith et al., 2020). We can correct the ensemble mean
using

_ — A UObSr A
GB* = (GB,— GB)-2 + GB
asig

where GBt IS the time series of the GBI, GBt* IS the corrected ensemble mean, the overbar
represents the ensemble mean, the hat the mean across all t, r is the correlation between the

ensemble mean and observations, and o, and o;, are the standard deviations of the observations
and ensemble mean, respectively.

8

2

where o;, and Gt%)t are the variances of the observations and mean of the ensemble members,

respectively.



Corrected GBI time series
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1. The corrected ensemble mean of the AMIP and hist-aer experiments more closely follow the ERA5 GB time series.




SST and aerosol forcing of GB B ofixeter’

Aerosol impact.

SST influence.

JJA blocking frequency over (60-75N,80W-20W)
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significance level. O’Reilly et al. (2016). MetUM-GAG atmosphere simulations to different forcings
between the periods 1964-1981 and 1994-2011. Bars
show modelled blocking responses to changes in all
forcings (All), sea-surface temperature/sea-ice extent and
anthropogenic aerosols (SSTAA), sea-surface
temperature/sea-ice extent (SST), anthropogenic aerosols
(AA), greenhouse gases (GHG), and Atlantic sector sea-
surf. temperature/sea-ice extent (SST_Atl). From Dong
and Sutton (2021).
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1. Temporal correlations between the hist-aer experiment and ERAS are low (top row). (AMIP correlates
strongly with ERAS as they are based on obs).

2. SST anomalies during the GB period are different in the AMIP and hist-aer experiments (bottom row).

3. SSTs/SICs and anthropogenic aerosol forcing appear to be acting through different pathways.




Conclusions and outlook B) i

* Recent period of increased Greenland blocking was not a sustained trend but an
anomalous period of frequent summertime blocking.

* Such an anomalous period of blocking is extremely rare in ~500 members from the
CMIPG6 archive, including members from historical, atmosphere-only, single forcing
and high resolution experiments.

 The multimodel means of the atmosphere-only and anthropogenic aerosol
experiments correlate with the observed trend in Greenland blocking, suggesting a
forced response that may be too weak in the models.

* The anthropogenic aerosol experiments do not seem to be influencing Greenland
blocking via the SSTs.

* Running experiments with the Met Office climate model (HadGEMB3) trying to better
understand SST/sea ice forcing and the influence of aerosols.
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