The Top-Down Thermodynamic Control of Atmospheric Blockings on the Magnitude of Surface Heat Waves

2m Temperature

Neal et al. (2022)

49°N θ cross section

Neal et al. (2022)

Z250 and wind speed

Neal et al. (2022)

Question

• What mechanism set the maximum surface temperature?

Hypothesis

 A warm anomaly aloft, set up by atmospheric blocking, suppressed convection.

Encroachment

Prediction of boundary layer temperature and height based solely on the thermodynamics (e.g., Stull, 1988).

Encroachment | Example

Encroachment Example

Encroachment | Thought Experiment

?

Encroachment | Thought Experiment

Encroachment | Thought Experiment

Summary

- Extreme heat waves in the midlatitudes are linked to anomalies in the upper level jet.
- We expect warming aloft to influence surface extremes by influencing the convective boundary layer.
- Future modeling work will investigate the role of top-down warming in the presence of processes such as cooling overnight and changes to the ground layer.