The Top-Down Thermodynamic Control of Atmospheric Blockings on the Magnitude of Surface Heat Waves

Emily Neal1 and Noboru Nakamura2

1 Harvard University, Department of Earth and Planetary Sciences 2 University of Chicago, Department of the Geophysical Sciences
2021 Pacific Northwest heat wave

Neal et al. (2022)
2021 Pacific Northwest heat wave

Neal et al. (2022)
2021 Pacific Northwest heat wave

Neal et al. (2022)
2021 Pacific Northwest heat wave

(a) θ at 49°N 119°W 00 UTC

(b) Surface Heat Fluxes at 49°N 119°W

- red: solar radiation
- blue: sensible heat flux
- green: longwave radiation
- orange: latent heat flux

Neal et al. (2022)
Question

• What mechanism set the maximum surface temperature?

Hypothesis

• A warm anomaly aloft, set up by atmospheric blocking, suppressed convection.
Encroachment

Prediction of boundary layer temperature and height based solely on the thermodynamics (e.g., Stull, 1988).
Encroachment | Example

- **Morning Sounding**: A linear relationship between temperature (K) and distance (km).
- **Sensible Heat Flux**: A graph showing the variation of heat flux (W/m²) with time (Hour).
- **Boundary Layer Height**: A linear increase in height (km) with temperature (K).
Encroachment | Example

\[\Delta \theta(\Gamma, a) \]

\[d(\Gamma, a) \]
Encroachment | Thought Experiment

Morning Sounding

- Plot shows variations in temperature (K) against altitude (km).

Sensible Heat Flux

- Graph illustrates the heat flux (W/m²) over a 12-hour period (Hour 0 to 12).

- Question mark indicates a point of uncertainty or query.
Encroachment | Thought Experiment
Encroachment | Thought Experiment
Encroachment | Column Model
Encroachment | Column Model

Diurnal cycle of boundary layer temperature

Surface Heat Fluxes
Encroachment | Column Model

Diurnal cycle of boundary layer temperature

Surface Heat Fluxes
Encroachment | Column Model

Diurnal cycle of boundary layer temperature

Surface Heat Fluxes
Summary

- Extreme heat waves in the midlatitudes are linked to anomalies in the upper level jet.
- We expect warming aloft to influence surface extremes by influencing the convective boundary layer.
- Future modeling work will investigate the role of top-down warming in the presence of processes such as cooling overnight and changes to the ground layer.