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Predict: Does a blocked state remain blocked?

A nascent blocked state

Given the onset of a blocked state,
what is the likelihood that the
flow will remain blocked for an
extended period (= 5 days) ?
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Two guestions

* Can a data-driven approach predict persistent blocking events?
If so, how?

e Can we do this within the limits of the observational record?



Predict: Does a blocked state remain blocked?

* Classification problem in machine learning
e But a plausible neural network training requires lots of data!
* |dealized model: Marshall-Molteni (3-layer QG equations)

ERAS5 comes later!

Marshall, J., and F. Molteni, 1993: Toward a Dynamical Understanding of
Planetary-Scale Flow Regimes. J. Atmos. Sci., 50, 1792—1818
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Model statistics comparison

Marshall-Molteni model ERAS data
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Neural Network training

e We train a convolutional neural network (CNN) Ps(Z) to approximate
p(x) = P(X starts a blocking event| X = x)
« X, are nascent blocked states (18 x 90 x 3 grid map)

Y, are binary variables: 1 if X,, starts a blocking event, 0 if not.
Nascent blocked state 2
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Performance Metrics

True positives

precision = — "
True positives + False positives

* Precision means “When you forecast an event, what is that
probability you are correct”.

True positives

recall =
True positives + False negatives

* Recall means “What fraction of the total number of events do you
forecast”.



CNN training result
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CNN training result
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CNN training result
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CNN training result
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CNN training result
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SHapley Additive exPlanation (SHAP) values

* Intuitively, given a function p(x), SHAP assigns an importance value ¢;
to each feature x; of the argument x € R%:

d
p(@) = Elp(@)] + Y o:(@).

* SHAP values quantify how much is gained by incorporating
information from each component z;



SHAP values can select important features
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Learned features + Logistic regression can

. . . 1
recover predictive skills  »@) =
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Question 2
Can we make the prediction with

events from the observational record
(ERAS)?



Transfer learning

* The model takes knowledge gained from solving one problem and applies it to a
different but related problem.

Pretraining data

Pretraining labels Target model

(large amount)

Pre-training Fine-tuning

Learned knowledge Fine-tuning data
Pre-trained model d Fine-tuning labels

(small amount)
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Transfer learning

* The model takes knowledge gained from solving one problem and applies it to a
different but related problem.

|Idealized model Pretraining data

Dataset Pretraining labels Target model
(88390 nascent [M(EI:EE eIV 19
blocks)

Train only the

Pre-training Fine-tuning
last layer
Learned knowledge Fine-tuning data
Pre-trained model d Fine-tuning labels ERAS data
Parameters/ (small amount) (273 nascent
: blocks)
weights
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Transfer learning outperforms direct training

5-day blocking events forecast

_ Climatology Direct Training (DT) | Transfer Learning (TL)

Best Precision 0.31 0.45 0.45
Best Recall 0.31 0.61 0.82

7-day blocking events forecast

_ Climatology Direct Training (DT) | Transfer Learning (TL)

Best Precision 0.07 0.21 0.22
Best Recall 0.08 0.48 0.76
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What has transfer learning learned by fine-
tuning on the ERAS dataset?
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Two guestions

* Can a data-driven approach predict persistent blocking events?
If so, how?

Yes! Explainable Al (SHAP values) identify important regions
upstream of the blocking that indicate it will persist. The upstream
wave train is consistent with our synoptic understanding of blocking,
but the CNN gains greater precision from more subtle features.

e Can we do this within the limits of the observational record?

4/14/24

Yes (to some degree)! Transfer learning allows us to combine
features learned from an atmospheric model with limited events

in ERA5, making more robust and accurate predictions for extreme
events than possible with direct training alone.
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Thanks!

Blocking and Extreme Weather in a Changing Climate
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Marshall, J., and F. Molteni, 1993: Toward a
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Flow Regimes. J. Atmos. Sci., 50, 1792—1818

* 3-layer quasi-geostrophic potential vorticity equation

Owq; + J(V4,4;) = —D; + 54,5 =1,2,3

« J(A,B) = A,B, — A,B, is the Jacobian operator.

« —Dj is the operator defining the radiative damping, surface friction,
and hyper diffusion: all relax model to state of rest

*5; is the forcing, computed from the observed data to give the model

a realistic mean state: _
S; = J(¥j,q5) + D,




Despite its importance, blocking events
are not predicted well!

Blocking events

* High-amplitude, quasi-stationary anticyclonic high-pressure anomalies

* Leads to regional extreme weather

time = 2002-01-02, level = 500 [millibars]
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_ _ 2010. Credit: ITAR-TASS News Agency / Alamy
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Criteria for the blocking events

* Key ingredients: high pressure + persistence

* Dole and Gordon criteria: Z500 anomalies > M(e.g. 150m) for at least
consecutive 5 days

Blocked state Blocked state Blocked state
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Composite maps for Marshall Molteni
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