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The variability of the Atlantic Meridional Overturning Circulation (AMOC) differs greatly among the 
separate coupled General Circulation Models (GCMs). Even within the same model, AMOC variability can 
be considerably different, depending on the CO2 scenario. Statistical techniques explicitly employing linear 
assumptions were used to document and characterize these differences in parallel investigations, results of 
which were recently presented at the 2014 AMOC meeting held 9-11 September in Seattle, WA. 

In the first project, we used Linear Inverse Modeling (LIM) to weigh the relative importance of heat flux (HF) 
and freshwater flux (FW) to the AMOC as represented in two coupled GCMs, the GFDL ESM2M and the NCAR 
CCSM4. These models were chosen as examples of the contrast between strongly periodic and highly chaotic 
representations of AMOC in coupled GCMs. We found that the strongly periodic AMOC in ESM2M (not 
shown) is an internal oscillation that, once set off, is little affected by variations in HF and FW.  In contrast, the 
CCSM4 relies heavily on these fields in order to maintain AMOC variability.  

We represent AMOC variability by the annually averaged, zonally averaged stream function anomalies from 
which not only the climatology, but also the Ekman component, has been subtracted. Augmenting this 
field, hereafter ψNoEck, with HF and FW, we used a combination of lagged and contemporaneous covariance 
statistics to estimate the propagator matrix G(τ) for the three-variable system over a time τ.  The right 
singular vector ф of G(τ), suitably normed, is the initial condition giving rise to the maximum amplification of 
ψNoEck, i.e., the optimal initial condition for growth. We normalized ф to unity and estimated the importance of 
HF and FW to the propagation of ψNoEck by operating G(τ) and modifications thereof on ф.

In Figure 1, the red curve is the Euclidean norm of ψNoEck as a function of lead time for ESM2M and CCSM4 
using the (ψNoEck, FW, HF) field. We repeated estimation of ψNoEck, successively suppressing interactions of 1) 
HF with ψNoEck (blue curve in Figure 1a,b), 2) FW with ψNoEck (green curve) and 3) both FW and HF with ψNoEck 
(purple curve) in G(τ). For the ESM2M, the variance amplification is maximized at three years (Figure 1a), 
consistent with a period of about 12 years. The amplification is only slightly dependent on whether or not 
HF and FW are allowed to interact with ψNoEck.  Further, the contribution to the variance of ф  by ψNoEckis very 
close to unity, indicating that FW and HF contribute very little to the optimal initial condition for growth. In 
contrast, ψNoEck contributes less than two-thirds of the variance of ф in CCSM4 (Figure 1b).  Interactions of HF 
and FW with ψNoEck strongly affect the amplification of ψNoEck, and this amplification occurs at smaller timescale 
than that in the ESM2M.

These results immediately present two questions, which are subjects of present work:  1) how can we decide 
which scenario is closer to the truth, and 2) how do dynamics operating on sub-annual timescales affect 
our results? We shall approach the first question by projecting Mercator reanalysis data onto basis patterns 
appropriate to each model and, using the LIM dynamical description of each model as a simulator, compare 
hindcasts with verification. The second question requires analysis of monthly model output to estimate sub-


