Rapid AMOC fluctuation events in coupled climate models Early results from the RAPID-RAPIT project

> Lesley Allison, Ed Hawkins and Tim Woollings NCAS-Climate, University of Reading, UK

Part 1: Plans for RAPID-RAPIT

Part 2: Rapid AMOC events in coupled climate models

Climate model projections are sensitive to (amongst other things) various model parameters, the values of which are not well known.

- Hargreaves and Annan (2006)
- EMIC, 54 ensemble members.

• Large spread in MOC response due to parameter perturbations.

RAPID-RAPIT Risk Assessment, Probability and Impacts Team

Objectives

- 1. A risk assessment of the collapse of the overturning circulation in the North Atlantic
- 2. An assessment of how the RAPID-WATCH observations will contribute to such a risk assessment
- 3. An assessment of the impacts of a collapse of the overturning circulation
- 4. A better understanding of the physical mechanisms of a severe slowdown or collapse of the North Atlantic overturning.

RAPID-RAPIT Risk Assessment, Probability and Impacts Team

RAPIT will use two coupled GCMs to produce a risk assessment for AMOC collapse:

HadCM3 Atmosphere: 19 levels, 2.5°	CHIME Coupled Hadley-Isopycnic Model Experiment	
lat × 3.75° lon	Developed at National Oceanography Centre, Southampton	
Ocean: 20 levels, 1.25° × 1.25°	Same atmosphere model and ice model as HadCM3	
Used extensively for climate prediction, detection and	Isopycnic ocean model (HYCOM), instead of HadCM3's depth-level vertical coordinate.	
attribution, and other climate sensitivity studies	Spherical 1.25° × 1.25° grid south of 55°N, with bipolar grid covering Arctic	

So far neither GCM has shown AMOC collapse without external freshwater forcing (hosing) being applied.

RAPIT will carry out a systematic search of input parameter space to look for any regions in which a collapse is likely.

RAPID-RAPIT Risk Assessment, Probability and Impacts Team

A very large (~10,000+ members) perturbed physics ensemble is being designed and set up for *climateprediction.net*

Statistical emulators will be built based on the results and used to fill the gaps in parameter space, and to estimate sensitivity and uncertainty.

Emulator:

A fast statistical approximation to a climate model.

Rapid AMOC fluctuation events in coupled climate models

RAPIT WP1: Mechanisms and impacts of rapid MOC changes

• Many simple climate models (e.g., EMICS) show complete shutdown of AMOC under suitable conditions, but this behaviour is rare in GCMs.

• As a first step towards understanding the differences between models, we examine smaller, rapid, natural AMOC fluctuation events in GCMs to determine important physical mechanisms and impacts.

Are the largest, most rapid events special?

• Are the largest, most rapid changes associated with any specific feedback mechanism?

- Eventually we want to look for a time-varying fingerprint of precursors to, and impacts of, large rapid AMOC changes.
- Is there a signal which is robust across different models?
- We plan to build up a database of rapid events from many different models.

...to start with: GFDL CM2.1, ECHO-G, IPSL CM4, FAMOUS

A selection of GCMs

GFDL CM2.1

Atmosphere: 2.5° lon × 2° lat, 24 levels Ocean: 1° × 1° (1/3° latitude in tropics), 50 levels 500-year control integration

<u>ECHO-G</u> Atmosphere: ECHAM4, 3.75°× 3.75°, 19 levels Ocean: HOPE-G, 2.8°× 2.8° (0.5° lat in tropics), 20 levels 1000-year control integration

<u>IPSL CM4</u> Atmosphere: LMDZ-4, 2.5° × 3.75°, 19 levels Ocean: ORCA, 2° × 2° (1° in tropics), 31 levels 1150-year control integration

FAMOUS Atmosphere: 7.5° lon 5° lat, 11 levels Ocean: 3.75° lon × 2.5° lat, 20 levels 4045-year control integration

Mean AMOC

Standard deviation of annual mean streamfunction

Defining a large, rapid event

We need a consistent definition that can be applied to different models, which have different characteristics of AMOC variability.

Example

- For each time point, determine the proceeding time window over which the largest AMOC change occurs (7-20 years).
- Event is detected if the magnitude and rate of the change across the time window both exceed given thresholds.

SSS anomalies associated with a composite of negative AMOC events

ppt

Questions to be considered

- 1. Do the range of GCMs exhibit common features in rapid MOC changes?
- 2. Why don't small rapid slowdowns develop into full shutdowns? Specific negative feedbacks or absence of positive feedbacks?
- 3. Do rapid events have dynamics that are different from slower MOC variations?
- 4. Are rapid increases driven by the same processes as rapid decreases?
- 5. What measure of the MOC captures these rapid changes most effectively? Could RAPID-WATCH observations detect or predict the changes?
- 6. Is the frequency of the MOC variability related to the likelihood of a rapid event?
- 7. What are the most important climate impacts of MOC changes across a range of GCMs?
- 8. How predictable are the rapid changes? Optimal regions/variables for observations?
- 9. How do the frequency and characteristics of rapid events change with increased radiative forcing?

Thank you

L.c.allison@reading.ac.uk

Lag correlations between AMOC and SSS

Hawkins and Sutton, GRL 2008

ECHO-G

Years

Location	of max in	time-mean o	verturning:	11 +ve,	13 -ve
Location	of max in	annual mear	n std dev:	8 +ve,	11 -ve
26N:	11 +ve,	10 -ve			
50N:	8 +ve,	13 -ve			
Max MO	C whereve	er it occurs:	11 +ve,	13 -ve	
	Location Location 26N: 50N: Max MO	Location of max in Location of max in 26N: 11 +ve, 50N: 8 +ve, Max MOC wherever	Location of max in time-mean o Location of max in annual mean 26N: 11 +ve, 10 -ve 50N: 8 +ve, 13 -ve Max MOC wherever it occurs:	Location of max in time-mean overturning: Location of max in annual mean std dev: 26N: 11 +ve, 10 -ve 50N: 8 +ve, 13 -ve Max MOC wherever it occurs: 11 +ve,	Location of max in time-mean overturning:11 +ve,Location of max in annual mean std dev:8 +ve,26N:11 +ve,10 -ve50N:8 +ve,13 -veMax MOC wherever it occurs:11 +ve,13 -ve

EVENTS/1000 yrs	+ve	-ve
Location of max	10	11
Location of max sd dev	7	10
26N	10	9
50N	7	11
Max wherever	10	11

Locatior	n of max in t	time-mean ov	verturning:	20 +ve,	27 -ve
Locatior	n of max in a	annual mean	std dev:	26 +ve,	15 -ve
26N:	20 +ve,	27 -ve			
50N:	38 +ve,	24 -ve			
Max MC	C whereve	r it occurs:	21 +ve,	24 -ve	

EVENTS/1000 yrs	+ve	-ve
Location of max	5	7
Location of max sd dev	6	4
26N	5	7
50N	9	6
Max wherever	5	6

- Location of max in time-mean overturning
 - Location of max in annual mean std dev
 - 26N
- 50N

Max MOC wherever it occurs

Southward propagation of overturning anomalies

Southward propagation of overturning anomalies

