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The RAPID / MOCHA observing system at 26.5oN

Gulf stream transport through Florida Straits - telephone cable

Ekman transport - scatterometer data

Mid-ocean transport - density structure and current meters



Statistics

Gulf Stream
+31.7 ± 2.8 Sv

MOC
+18.5 ± 4.9 Sv

Ekman
+  3.5 ± 3.4 Sv

Upper Mid-Ocean
-16.6 ± 3.2 Sv

Variability in the MOC and its components
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"The net upper mid-ocean transport is a reliable measure of the
mid-ocean component of the MOC:



Wunsch (2008)

Projected onto vertical
modes of horizontal
velocity:

•  ±16 Sv transport
fluctuations above
1000m

•  substantial
intraseasonal to
decadal transport
variations

Sea surface height (η) variability = ± 16 cm rms near the western boundary.
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RMS amplitude of sea surface height and dynamic height along 26.5oN
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Northward transport
fluctuations (Sv)
above 1000m and
east of WB2, WB3
and WB5.
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Can sea surface height difference be used to estimate upper ocean transport?
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each mooring
with the zonally-
integrated
transport to the
east.



What happens to an eddy as
it approaches the western
boundary?  Reduced-gravity
model experiments on a mid-
latitude β-plane.

Δx = 14km (1/8o)

f0 = 0.65 x 10-4 s-1

g’ = 0.015 ms-1

H = 750m

A0 = 30 m2s-1

Initial equivalent sea surface height η (cm
)
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Net northward transport within the upper model layer



Variability in η near
western boundary
decays on approximately
the same scale as seem
in the altimetry and
mooring data.

An eddy-filled ocean:



In a linear, reduced-gravity ocean:

Low frequency limit ⇒ long and short Rossby wave solutions:

At the western boundary u=0 and layer thickness depends on balance between
incoming long Rossby waves and reflected short Rossby waves:

Substituting into 2 and noting ks>>kl gives:

Assuming no wave disturbance on the boundary to the north:
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Conclusions and implications for monitoring strategy

•  Sea surface and dynamic height variability decline within roughly 100km of the
    Abaco shelf.

•  Therefore, upper ocean transport integrated from boundary to boundary displays
    much lower variability than that integrated from any station close to but not right at
    the western boundary.
    ⇒ To capture the variability of upper mid-ocean transport, measurements
         right at the boundary are required.

•  The correlation between Δη and transport decreases as the western boundary is
    approached due to changes in the vertical structure of the integrated flow.
    ⇒ Sea surface height cannot be used to measure the time-variable
         strength of the upper mid-ocean transport.

•  Simple model experiments imply that the reduction in η variability is due to the rapid
    propagation of pressure anomalies along the boundary as waves.  Linear wave
    dynamics suggest that thermocline thickness (and η) anomalies on the western
    boundary are a factor f / βΔy smaller than those in the basin interior.

The eddy field at 26.5oN does not dominate MOC variability on interannual to decadal
timescales, and does not pose a large signal-to-noise problem for RAPID
measurements.





Mid-ocean transport - the hydrographic method on a grand scale!
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Zonal density gradient
gives basin-wide integrated
internal transport (TINT):

Current meter measurements give transport
through western boundary wedge (TWBW).

Johns et al. (2008)



Imposing zero net flow across the section:
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…allows a compensating transport (TCOMP)
to be determined so that:

…and hence the MOC, defined as the maximum northward transport.! 
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This gives total meridional transport as a
function of depth:

Cumulative transport profiles
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First baroclinic mode explains less of the variance in upper ocean transport
as western end-point of section gets closer to the boundary.


