Basin-wide integrated volume transports in an eddy-filled ocean
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The RAPID / MOCHA observing system at 26.5°N
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Gulf stream transport through Florida Straits - telephone cable
Ekman transport - scatterometer data

Mid-ocean transport - density structure and current meters



Variability in the MOC and its components
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The net upper mid-ocean transport is a reliable measure of the

mid-ocean component of the MOC:
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Sea surface height (n) variability = + 16 cm rms near the western boundary.

Projected onto vertical
modes of horizontal
velocity:
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Sea surface height (n) variability = + 16 cm rms near the western boundary.

40 ! ! | !
| : 3 R Upper Mid—Ocean|
Projected onto vertical 5 2 e
modes of horizontal g
VeIOCIty' E D0
¢ 116 SV transport _400 5|5 1i0 . 1|5 2i0 2|5 3i0
fluctuations above Time [months]
1000m 40 F
| = 2t
» substantial < ;
intraseasonal to g
decadal transport = 20
variations -40 ¢

105 110 115 120 125 130 135
Months

Wunsch (2008)




RMS amplitude of sea surface height and dynamic height along 26.5°N
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Can sea surface height difference be used to estimate upper ocean transport?

Correlation of
sea surface
height difference
between eastern
boundary and
each mooring
with the zonally-
integrated
transport to the
east.
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Net northward transport within the upper model layer
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An eddy-filled ocean:
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In a linear, reduced-gravity ocean: | 1. o _ o+ g‘% -0
ot ox
2 d + fu+ g'% =0
ot dy
3 o H(%+ ﬂ) =0
ot ox dy
O _ a2
Low frequency limit = long and short Rossby wave solutions: k_z =-pL,
wk, =-f3

At the western boundary u=0 and layer thickness depends on balance between
incoming long Rossby waves and reflected short Rossby waves:

h! _ Al(y)ei(klx—wz‘)+As(y)ei(ksx—a)t)

d (Al+As)z—/3Al
dy\ f £’

Substituting into 2 and noting k>>k, gives:

pAYy
Assuming no wave disturbance on the boundary to the north: A+ A~ f ‘Az‘




Conclusions and implications for monitoring strategy

Sea surface and dynamic height variability decline within roughly 100km of the
Abaco shelf.

Therefore, upper ocean transport integrated from boundary to boundary displays
much lower variability than that integrated from any station close to but not right at
the western boundary.
=> To capture the variability of upper mid-ocean transport, measurements

right at the boundary are required.

The correlation between Ar and transport decreases as the western boundary is

approached due to changes in the vertical structure of the integrated flow.
=> Sea surface height cannot be used to measure the time-variable

strength of the upper mid-ocean transport.

Simple model experiments imply that the reduction in n) variability is due to the rapid

propagation of pressure anomalies along the boundary as waves. Linear wave
dynamics suggest that thermocline thickness (and n)) anomalies on the western
boundary are a factor f / Ay smaller than those in the basin interior.

The eddy field at 26.5°N does not dominate MOC variability on interannual to decadal
timescales, and does not pose a large signal-to-noise problem for RAPID
measurements.







Mid-ocean transport - the hydrographic method on a grand scale!
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Imposing zero net flow across the section:

Z=0

f[TEK (2) + 1555(2) + Ty (Z)] dz=0

Z=—H

...allows a compensating transport (7,,,p)
to be determined so that:

Tyi0(2) =Ty (2) + T (2) + Ty p(2)

This gives total meridional transport as a
function of depth:

Toasin(2) = Ty (2) + T55(2) + T (2)

Cumulative transport profiles
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...and hence the MOC, defined as the maximum northward transport.




WB2-EAST
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First baroclinic mode explains less of the variance in upper ocean transport
as western end-point of section gets closer to the boundary.



