Multidecadal MOC Variability

M. Latif, D Dommenget, N. Keenlyside, W. Park, V. Semenov, A. Strehz Leibniz Institute of Marine Sciences at Kiel University

Take home message: Internal multidecadal MOC variability matters even on a global scale

Outline

- **1. General remarks**
- 2. Dynamical considerations
- 3. Internal vs. external variability
- 4. Predictability and prediction

1. General remarks

Strong multidecadal variability is observed in the global mean SAT

Uncertainties in global change projections

Societal relevance of multidecadal variability

Latif et al. 2009

Is the cause of the multidecadal variability external or internal?

Zonal mean temperatures during the 20th century

SST in the North Atlantic may record MOC changes

Does the multidecadal variability originate in the Atlantic/Arctic?

2. Dynamical considerations

The North Atlantic Oscillation

NAO spectrum

Stochastic climate model

Most evidence points towards the "ocean-only" oscillator

The Atlantic SST dipole, an index of relative MOC variations

The variability in the dipole index will be used in the following as surrogate of MOC variability

Ocean-atmosphere interactions

3. Internal vs. external variability

The IPCC models reproduce the warming in the global mean

This does not leave much room for internal variability K

AMO impact, SAT 1978-2007?

The last decades may contain a strong contribution from internal variability

Diagnostic approach to separate external and internal climate signals during the 20th century

$T(x,y,t)=\alpha \cdot \psi(x,y) \cdot F(t) + R(x,y,t)$

$F(t) = \log[CO_2(t-11yr)/CO_2(0)]$

ψ(x,y) = 1st EOF of multi-model ensemble mean 20thcentury SAT

R(x,y,t) = Residual internal variability

IFM-GEOMAR

Strehz et al. 2009, in prep.

$T(x,y,t) = \alpha \cdot \psi(x,y) \cdot F(t) + R(x,y,t)$

ψ(x,y) = 1st eof of multi-model mean 20thcentury temperature (87%)

$F(t) = \log[CO_2(t-11yr)/CO_2(0)]$

Proof of concept in the model world

Approach works fine in the model world

Observed global SAT and fitted external component

The most recent period

The internal variability during the most recent decades

The last decades contain indeed a strong contribution from internal (MOC) variability

The leading mode from the annual residuals R(x,y,t) is ENSO

1st eof of residual from annual values

Indices of internal variability (PDO, AMO) from R(x,y,t)

The analysis recovers the decadal variations in the PDO and the AMO

4. Predictability and prediction

warm extremes

Shifts in PDFs of European SAT from decade to decade in response to THC changes (Pohlmann et al. 2004)

Predictability

Thermohaline Strength

HadCM3

ARPEGE3

INGV

20

40

60

80

Model Years (Arbitrary)

100 120 140

HAM5/MP

Potential (diagnostic) predictability of SAT

Classical (prognostic) predictability

Interannual vs. decadal potential predictability

interannual (1-5 years)

decadal (10-100 years)

Obtained from the Kiel Climate Model (KCM)

Latif et al. 2009

Prediction of global SAT for the next decade

Hurrell et al., BAMS, 2009

Prediction of global SAT and MOC

Hurrell et al., BAMS, 2009

Conclusions

- There is strong evidence that the multidecadal SAT variability in the Atlantic (and globally) is driven (at least partly) by variations in the MOC
- A stochastic scenario is most plausible, in which the ocean is driven by the low-frequency portion of the atmospheric variability (NAO)
- However, the atmospheric response to SST anomalies is still not understood and the role of coupled feedbacks is unclear
- MOC variability appears to be predictable about a decade ahead
- The most recent decades contain a strong contribution from the AMO (MOC) even on a global scale. This raises questions about the average climate sensitivity of the IPCC models

