MOC influence on the atmosphere

Mechanisms of the atmospheric response

Multidecadal variability of the MOC and its impact on climate

Rym MSADEK*, Claude Frankignoul

*GFDL/NOAA Princeton University

US AMOC Annual Meeting Annapolis

May 3-5 2009

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Introduction ●○○○○ MOC influence on the atmosphere

Mechanisms of the atmospheric response

Is there an observed influence of MOC on climate?

Simulated SST anomalies associated with a max of the MOC

Observed SST anomalies associated with the $\ensuremath{\mathsf{AMO}}$

The AMO has been linked to various climate anomalies :

- Sahel droughts (Rowell et al. 1995)
- Northeast Brazilian rainfall (Folland et al. 2001)
- Frequency of Atl. Hurricanes (Goldenberg et al. 2001)
- Changes in the European/US climate (Sutton and Hodson 2005)

 \Rightarrow Are they MOC-induced impacts?

MOC influence on the atmosphere

Mechanisms of the atmospheric response

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Outline

- Is there a direct influence of the MOC on the atmosphere?
- What is the seasonality of the atmospheric response?

MOC influence on the atmosphere

The IPSL-CM4 coupled model

IPSL-CM4

- Atmosphere :**LMDZ**, horizontal resolution 3.75 °, 19 vertical levels
- Ocean : OPA/NEMO, resolution 2 °, 31 vertical levels
- Sea ice : LIM, dynamics and thermodynamics
- Land surface : ORCHIDEE
- Coupling : OASIS

Model used for IPCC AR4 **Control simulation 500 yrs** Fixed present-day CO2 level **no anthropogenic forcing**

Marti et al. 2005

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

http://mc2.ipsl.jussieu.fr

Introduction ○○○●○ MOC influence on the atmosphere

Decadal variability of the MOC

EOF1 MOC

 $\begin{array}{l} \mathsf{PC1} \ \mathsf{MOC} \\ \Rightarrow \ \mathsf{Decadal} \ \mathsf{to} \ \mathsf{multidecadal} \ \mathsf{variability} \\ \Rightarrow \ \mathsf{Red} \ \mathsf{spectrum} \ \mathsf{but} \ \mathsf{no} \ \mathsf{significant} \\ \mathsf{peak} \end{array}$

MOC influence on the atmosphere

Mechanisms of the atmospheric response

MOC response to atmospheric forcing

Cross-correlation PC1 MOC/EAP Low-frequency

10E

205

(Msadek and Frankignoul 2008)

Detecting an influence of the ocean on the atmosphere

Lagged cross-correlations/regressions between oceanic and atmospheric fields

- In phase : both forcings of the ocean and the atmosphere
- When the atmosphere leads : atmospheric forcing only
- When the ocean leads : ocean forcing only

MOC influence on the atmosphere 0 = 0 = 0 = 0

Mechanisms of the atmospheric response

Summer SLP anomalies when the MOC leads

- Significant EAP-like signal in summer when the MOC leads
- Robust and persistant : t-test + MonteCarlo
- The annual response is dominated by the summer response
- \Rightarrow Weak positive feedback

(Msadek and Frankignoul 2008)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Mechanisms of the atmospheric response

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Vertical structure of the summer response

- Equivalent barotropic response in the mid and high latitudes
- Baroclinic in the tropics
- Very similar to the vertical structure of the EAP in the model

MOC influence on the atmosphere $\circ\circ\circ\circ\circ\circ\circ\circ$

Mechanisms of the atmospheric response

What are the SST anomalies few years after the MOC

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」のへで

Link with the AMO

SST anomalies in phase with the model AMO index : low-passed filtered SST averaged over the North Atlantic (0°-60°N-75°W-7.5°E)

SST anomalies 10 yrs after a maximum of the MOC

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Link with the AMO

The MOC leads the AMO by 5 to 10 yrs \Rightarrow significant influence of the AMO on the atmosphere with a 5-yr lag

3

A B > A B > A B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A

Mechanisms of the atmospheric response

Climatic impacts forced by the MOC

Temperature and Precipitation anomalies 10 yrs after a max of the MOC

• 2-m temperature response

- over the ocean : quite similar to the SST
- over land : warming of eastern US, Euradia, Sahel
 ⇒ potential predictibility (hindcast) of about 10%, 5 to 10

yrs in advance

• Precipitation response

- Increased rainfall in the subpolar gyre, the Indian ocean, central Africa
- Northward shift of the ITCZ

50°N

25°N

0°

80°W

-0.05

0

MOC influence on the atmosphere 0000000

Mechanisms of the atmospheric response

-

[2m

Comparison with climatic impacts induced by the AMO

10yrs after the MOC

5yrs after the AMO

Sensitivity experiments with a simplified coupled model

Slab ocean mixed-layer model coupled to an AGCM (LMDZ) in the North Atlantic

amplified to increase the signal-to-noise ratio

- 80 yr control simulation
- 80 yr with the SST anomaly added as a boundary condition

 \rightarrow Anomalous minus control run gives an ensemble of 80 independant runs that are averaged to obtain the equilibrium response

MOC influence on the atmosphere

Mechanisms of the atmospheric response $\circ \bullet \circ \circ \circ \circ \circ$

Geopotential height response in summer

- EAP-like signal in the North Atlantic
- Global-scale anomalies
- Resembles the response identified in IPSL

MOC influence on the atmosphere

Mechanisms of the atmospheric response ${\scriptstyle \bigcirc \bullet \bullet \circ \circ \circ \circ}$

Non-linearity of the summer response

Z500 anomalies in JJA

SST +

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ □

Very similar response whatever the sign of the SST forcing \Rightarrow Strong non-linearities

MOC influence on the atmosphere

Non-linearity of the summer response

Zonal mean temperature and wind anomalies

- change of sign in temperature
- but asymetrical response
- \Rightarrow Negative anomalies in the zonal wind between 30 °N et 45 °N for SST- et SST+
- \Rightarrow Eddy-mean flow interaction

MOC influence on the atmosphere

Mechanisms of the summer atmospheric response

Eddy-mean flow interaction

 Increased Storm track Activity in the North Atlantic
Anomalous divergence
⇒ Jet acceleration

Global scale response

-Strengthened convection over the Asian summer monsoon region ⇒ North Atl./Asia teleconnection - Rossby wave sources ⇒ Asia/North Atl. teleconnection ?

MOC influence on the atmosphere

Mechanisms of the atmospheric response $\circ \circ \circ \circ \circ \circ \bullet \circ$

The winter signal

MOC influence on the atmosphere

Mechanisms of the atmospheric response $\circ\circ\circ\circ\circ\circ\bullet$

Summary

- The variability of the Atlantic MOC at decadal timescales is primarily driven by the EAP (poor location of the convection sites)
- Significant influence of the MOC on the atmosphere during summer through an extratropical AMO-like SST pattern.
- Weak positive feedback of the MOC on the atmosphere
- The climate impacts extend beyond the North Atlantic region and are broadly consistent with previous model studies and observations
- The summer atmospheric response is controlled by an eddy feedback mechanism by perturbing the North Atlantic storm tracks
- The MOC has also a significant impact on the atmosphere in winter : NAO-like response
- Highly non linear response ⇒ difficult to detect in coupled simulations using linear methods (regressions etc..)