Vertical-mode decomposition as a dynamic description of the Atlantic meridional overturning circulation

Zoltan Szuts

Jochem Marotzke

Max-Planck-Institut für Meteorologie, Hamburg

US AMOC Meeting, Miami

7 June 2010

What processes does the RAPID/MOCHA array measure?

1.4.

10

20

five full-depth

30

density moorings

RAPID/MOCHA array

4

MarWest

50

Longitude (°W)

40

depth (km)

To understand the basin-scale signal (AMOC), we must also understand the local signal.

Test whether simple dynamics explain vertical density fluctuations.

27

26

30

25

20

Latitude (°N)

WB2

77

80

W_{B3}

70

76

60

What processes does the RAPID/MOCHA array measure? **RAPID/MOCHA** array AMOC Components 27 $T_{\text{AMOC}} = T_{\text{MO}} + T_{\text{FC}} + T_{\text{Ek}}$ **WB2** 4 five full-depth 40 WB3 density moorings 26 77 76 depth (km) Transport (Sv) 20 Latitude (°N) 30 1.4 . 1 MarWest 25 80 70 60 50 40 30 20 10 Longitude (°W)

To understand the basin-scale signal (AMOC),

we must also understand the local signal.

für Meteorologie

3

Methodology and Organization

1. **Decompose vertical structure at each mooring into modes.** Fit modes to 2-day low-pass filtered moored CTD measurements:

2. How useful is the decomposition and what does it show?

Compare it with the original signal and with SSH.

- local signal at each mooring
- transports between moorings, across basin
- 3. Summary

How to obtain modes from our observations?

In a motionless and flatbottomed ocean, vertical modes depend on $N^2(z)$.

$$u' = \sum_{n} U_{n}(x, y, t) F_{n}(z)$$
$$p' = \rho_{0} \sum_{n} P_{n}(x, y, t) F_{n}(z)$$

From moored density measurements: (1) calculate $\rho(z, t)$ with climatology (RAPID) (2) calculate pressure perturbation

$$p'(z, t) = \frac{g}{\rho_0} \int \rho'(z, t) dz$$

(3) use Gauss-Markov inversion to fit8 modes at each time-step (Wunsch, 1996)

Compared quantities

Because these quantities are all time-perturbations, for geostrophic transport calculations we must add back the time-averaged geopotential anomaly $\overline{\phi}(z)$.

Is the full-depth signal recovered at WB5?

Variance against depth or mode number

- -p' is intensified above 1200 m
- weak signal below 3000 m
- first baroclinic mode (BC1) dominates
- barotropic mode (BT) is retained, as it's unclear whether enforcing a condition of 'no forcing' is appropriate (Kunze *et al.*, 2002)

Is the local signal at WB5 recovered?

(the signal at 200 db is considered to avoid surface seasonal heating and cooling)

Is the transport between WB5 and MarWest recovered?

std	correlation		
(Sv)	T_{Φ}	$T_{\rm BC1}$	$T_{\rm SSH}$
17	1	0.91	0.80
24 20		I	0.83

there's still good agreement: of the variance in T_{Φ} ,

- $-T_{BC1}$ recovers 83%
- T_{SSH} recovers 64%

How does mode decomposition vary across 26.5°N?

std in upper 1000 is large and surface-intensified away from boundaries

 Surface intensification is weak at boundaries

 BC1 mode dominates away from boundaries

WB2 and EB1 have different
distribution of variance among
modes

Correlations of the local signal across 26.5 $^{\circ}$ N

– the BC1-reconstruction and Φ agree well at 200 db

- In the interior (WB5, Marwest), the BC1-reconstruction and SSH agree well with ${f \Phi}$
- At boundaries, although the BC1-reconstruction recovers the Φ signal that is correlated with SSH, neither is well-correlated with Φ .

Transports between moorings (T_{Φ} , T_{BC1} , and T_{SSH})

- The local BC1 signal is also the dominant transport away from boundaries

- At boundaries, only 40% of the transport variance is recoverable from BC1 or SSH

Conclusions

We characterize the variance measured by density moorings in terms of the vertical mode structure.

- The first baroclinic mode dominates in ocean basin ...
 - ... but not within 25–50 km of W or 1000 km of E boundaries.
- Transport at the boundaries is poorly explained by the first baroclinic mode
 ... and so wave perturbations there do not have the simple form expected.
- This vertical structure offers a clear explanation of the limitations of recovering transport from SSH at this latitude.

Modal Decomposition Theory

A motionless reference state $\overline{\rho}(z)$ defines the perturbations, and its stratification N^2 defines F(z) and G(z)

$$\frac{d}{dz} \left(\frac{1}{N^2} \frac{dF}{dz} \right) + \gamma^2 F = 0$$

and
$$G(z) = \frac{i\omega}{N^2(z)} \frac{dF(z)}{dz}$$

there are two vertical shapes (Gill, 1982; Wunsch and Stammer 1997):

The equivalent geopotential anomaly modes ϕ'_n are calculated with 1) hydrostatic balance to obtain ρ'_n , 2) vertical integration to obtain ϕ'_n , and 3) the Boussinesq approximation:

$$\Phi'_{n} = \int_{0}^{p_{0}} \delta'_{n} dp \approx \int_{0}^{p_{0}} \frac{-\rho'_{n}}{\overline{\rho}^{2}} dp = \int_{0}^{p_{0}} \frac{-1}{\overline{\rho}^{2}} \frac{\partial p'_{n}}{\partial z} dp = \dots = \frac{1}{\rho_{0}} p'_{n}$$

