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What processes does the RAPID/MOCHA array measure?

RAPID/MOCHA array AMOC Components
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Test whether simple dynamics explain vertical density fluctuations.
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whether [simple] dynamics explain [vertical] [density fluctuations.

not EOFs
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Methodology and Organization

1. Decompose vertical structure at each mooring into modes.
Fit modes to 2-day low-pass filtered moored CTD measurements:

2. How useful is the decomposition and what does it show?
Compare it with the original signal and with SSH.
— local signal at each mooring

— transports between moorings, across basin

3. Summary
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How to obtain modes from our observations?

In a motionless and flat- From moored density measurements:
bottomed ocean, vertical (1) calculate p(z, t) with climatology (RAPID)
modes depend on N?(z). (2) calculate pressure perturbation
g
u =) Un(X,y,t)Fn(2) p'(z,t) = p— /p’(z,t) dz
0
!
b= Po Zn Pn(X, ¥, 1) Fa(2) (3) use Gauss-Markov inversion to fit
8 modes at each time-step (Wunsch, 1996)
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Compared quantities

For remainder of talk, compare these three quantities in units of m?s™:

geopotential anomaly perturbation: o'
Original or
reduced pressure perturbation: p’ / Po

Reconstructed reconstructed pressure perturbation: Z P.(x,t) F,(2)
n

SSH altimetric SSH anomaly times gravity: an
(with zonal average removed)

Because these gquantities are all time-perturbations, for geostrophic transport
calculations we must add back the time-averaged geopotential anomaly ¢(z).
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Is the full-depth signal recovered at WB5?

original p’/ pg (inm’s~?)  reconstructed p’/pg
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— data from three deployments 0.1 OWM_M\»NMMW
— only use data at sensor depths (dots) 0 fractional residual
— don’t use observations above 200 m — recovered signal using 8 modes
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pressure (db)

Variance against depth or mode number
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— p’ is intensified above 1200 m
— weak signal below 3000 m
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— first baroclinic mode (BC1) dominates

— barotropic mode (BT) is retained, as it's un-
clear whether enforcing a condition of ‘no forc-
INg’ is appropriate (Kunze et al., 2002)



Is the local signal at WB5 recovered?

correlation (r)

geopotential anomaly (P) at 200 db o) /
BC1 reconstruction (pi/po) at 200 db pl/po 9
SSH (gn) from altimetry o 1 087 0.85
—  p1/Po 1 093
g7 1

there’s good agreement:

— BC1 recovers 76% of variance
— of which almost all (86%) is co-
herent with SSH

2004 2005 2006 2007

(the signal at 200 db is considered to avoid surface seasonal heating and cooling)
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transport (Sv)

Is the transport between WB5 and MarWest recovered?

Geostrophic transport relative to bottom

directly measured (To)
reconstructed from BC1 mode (Tgc1)
reconstructed from SSH and BC1 (Tggy)

2004 2005 2006 2007
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std correlation
(SV) | To Teecr  TssH

17 1 091 0.80
24 1 0.83
20 1

there’s still good agreement:
of the variance in Ty,
— Tgey recovers 83%
— Tssy recovers 64%
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mode number

How does mode decomposition vary across 26.5°N?
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— std in upper 1000 is large and
surface-intensified away from
boundaries

— Surface intensification is weak
at boundaries

— BC1 mode dominates away
from boundaries

— WB2 and EB1 have different
distribution of variance among
modes

11



Correlations of the local signal across 26.5°N
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— the BC1-reconstruction and @ agree well at 200 db

— In the interior (WB5, Marwest), the BC1-reconstruction and SSH agree well with ®
— At boundaries, although the BC1-reconstruction recovers the @ signal that is
correlated with SSH, neither is well-correlated with ®.
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Transports between moorings (Te, Tgc1, and Tssy)

correlations (r) of:

std (Sv)
Te T

9.1 3.8 85 ) basm W|de WB2 and EB o lssi To Ty
--------------------------- o< Ry st 0.63 0.68
0.83 0.95

0.80 0.91

0.77 0.89

0.45 0.29

2004 2005 2006 2007 2008

— The local BC1 signal is also the dominant transport away from boundaries
— At boundaries, only 40% of the transport variance is recoverable from BC1 or SSH
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Conclusions

We characterize the variance measured by density moorings in terms of the vertical
mode structure.

— The first baroclinic mode dominates in ocean basin . ..
... but not within 25-50 km of W or 1000 km of E boundaries.

— Transport at the boundaries is poorly explained by the first baroclinic mode
...and so wave perturbations there do not have the simple form expected.

— This vertical structure offers a clear explanation of the limitations of recovering
transport from SSH at this latitude.
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Modal Decomposition Theory

A motionless reference state p(z) defines d ( 12 dF ) + ’yZF _

the perturbations, and its stratification N2 dz \ N< dz .

defines F(z) and G(z) and G(z) = lw dF(2)
N%(z) dz

there are two vertical shapes (Gill, 1982; Wunsch and Stammer 1997):
u’ = U(x,y,t) F(z)
v = V(x,y,1t)F(z)
p’ = po P(X,y,t) F(z)

The equivalent geopotential anomaly modes qbﬁ] are calculated with 1) hydrostatic balance to
obtain pﬁ], 2) vertical integration to obtain gbﬁ] and 3) the Boussinesq approximation:

w’' = P(x,y,1) G(z2)
¢ = H(x,y,t) G(2)

Po Po Po
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