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What processes does the RAPID/MOCHA array measure?
RAPID/MOCHA array

five full-depth
density moorings
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To understand the basin-scale signal (AMOC),

we must also understand the local signal.

Test whether simple dynamics explain vertical density fluctuations.
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To understand the basin-scale signal (AMOC),

we must also understand the local signal.

Test whether simple dynamics explain vertical density fluctuations.

use a priori shapes,
not EOFs

vertical
modes

certain forms
implicitly assumed
by Wunsch (2008)
or for SSH

profiles of local
geopotential
anomaly
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Methodology and Organization

1. Decompose vertical structure at each mooring into modes.
Fit modes to 2-day low-pass filtered moored CTD measurements:

2. How useful is the decomposition and what does it show?
Compare it with the original signal and with SSH.

– local signal at each mooring

– transports between moorings, across basin

3. Summary
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How to obtain modes from our observations?

In a motionless and flat-
bottomed ocean, vertical
modes depend on N2(z).

u′ =
∑

n Un(x , y , t) Fn(z)

p′ = ρ0

∑
n Pn(x , y , t) Fn(z)

From moored density measurements:
(1) calculate ρ(z, t) with climatology (RAPID)
(2) calculate pressure perturbation

p′(z, t) =
g

ρ0

∫
ρ′(z, t) dz

(3) use Gauss-Markov inversion to fit
8 modes at each time-step (Wunsch, 1996)
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Compared quantities

For remainder of talk, compare these three quantities in units of m2s−2:

geopotential anomaly perturbation: φ′
Original or

reduced pressure perturbation: p′/ρ0

Reconstructed reconstructed pressure perturbation:
∑

n

Pn(x , t) Fn(z)

SSH altimetric SSH anomaly times gravity: gη
(with zonal average removed)

Because these quantities are all time-perturbations, for geostrophic transport

calculations we must add back the time-averaged geopotential anomaly φ(z).
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Is the full-depth signal recovered at WB5?

original p′/ρ0 (in m2s−2) reconstructed p′/ρ0
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– data from three deployments

– only use data at sensor depths (dots)

– don’t use observations above 200 m – recovered signal using 8 modes
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Variance against depth or mode number

original p′/ρ0 (in m2s−2) p′nFn(z = 0) (in m2s−2)
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– p′ is intensified above 1200 m

– weak signal below 3000 m

– first baroclinic mode (BC1) dominates

– barotropic mode (BT) is retained, as it’s un-

clear whether enforcing a condition of ‘no forc-

ing’ is appropriate (Kunze et al., 2002)
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Is the local signal at WB5 recovered?

geopotential anomaly (Φ) at 200 db
BC1 reconstruction (p′

1/ρ0) at 200 db
SSH (gη) from altimetry
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p′

1/ρ0 1 0.93
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there’s good agreement:

– BC1 recovers 76% of variance

– of which almost all (86%) is co-

herent with SSH

(the signal at 200 db is considered to avoid surface seasonal heating and cooling)
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Is the transport between WB5 and MarWest recovered?

Geostrophic transport relative to bottom
directly measured (TΦ)
reconstructed from BC1 mode (TBC1)
reconstructed from SSH and BC1 (TSSH)
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there’s still good agreement:

of the variance in TΦ,

– TBC1 recovers 83%

– TSSH recovers 64%
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How does mode decomposition vary across 26.5◦N?
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– std in upper 1000 is large and

surface-intensified away from

boundaries

– Surface intensification is weak

at boundaries

– BC1 mode dominates away

from boundaries

– WB2 and EB1 have different

distribution of variance among

modes

11



Correlations of the local signal across 26.5◦N
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– the BC1-reconstruction and Φ agree well at 200 db

– In the interior (WB5, Marwest), the BC1-reconstruction and SSH agree well with Φ
– At boundaries, although the BC1-reconstruction recovers the Φ signal that is

correlated with SSH, neither is well-correlated with Φ.
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Transports between moorings (TΦ, TBC1, and TSSH)
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– The local BC1 signal is also the dominant transport away from boundaries

– At boundaries, only 40% of the transport variance is recoverable from BC1 or SSH
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Conclusions

We characterize the variance measured by density moorings in terms of the vertical

mode structure.

– The first baroclinic mode dominates in ocean basin . . .

. . . but not within 25–50 km of W or 1000 km of E boundaries.

– Transport at the boundaries is poorly explained by the first baroclinic mode

. . . and so wave perturbations there do not have the simple form expected.

– This vertical structure offers a clear explanation of the limitations of recovering

transport from SSH at this latitude.
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Modal Decomposition Theory

A motionless reference state ρ(z) defines

the perturbations, and its stratification N2

defines F(z) and G(z)

d

dz

(
1

N2

dF

dz

)
+ γ2F = 0

and G(z) =
iω

N2(z)

d F(z)

dz

there are two vertical shapes (Gill, 1982; Wunsch and Stammer 1997):

u′ = U(x , y , t) F(z)

v ′ = V(x , y , t) F(z)

p′ = ρ0 P(x , y , t) F(z)

w ′ = P(x , y , t) G(z)

ξ′ = H(x , y , t) G(z)

The equivalent geopotential anomaly modes φ′
n are calculated with 1) hydrostatic balance to

obtain ρ′n, 2) vertical integration to obtain φ′
n, and 3) the Boussinesq approximation:

Φ′
n =

p0∫
0

δ′n dp ≈
p0∫

0

−ρ′n
ρ2 dp =

p0∫
0

−1

ρ2

∂p′n
∂z

dp = ... =
1

ρ0
p′n
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