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Outline

® Explore predictability of AMOC in models, both
simple and complex

® Describe predictability experiments with the
MITgcm- Double Drake (DDR)

® |nterpretation in terms of non-normal mode
dynamics, and comparison of DDR with CM2. |



Exploring predictability in models

® | ong term observations of MOC are scarce and
models display a wide range of MOC decadal
variability - poorly understood

® Goal is to develop a model-independent, diagnostic
measure of MOC predictability

® Begin by exploring a model of intermediate
complexity: aqua-planet configuration of the MITgcm



Double Drake (aqua-planet model)

theta anomaly at 500m FLAT BOTTOMED (3km)
when MOC is weak
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Double Drake:“Perfect” Ensembles

MOC ensemble 1 MOC ensemble 2
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® “perfect” ocean IC’s, with
perturbed atmospheres
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® predictable for at least one
35 year cycle
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Double Drake: “Perfect” Ensembles ctd.
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|. Temperature dominates MOC variability, salinity has little effect

2. Sampling frequency: IC’s in the ocean can be averaged over a fraction
of an oscillation period (~1/4 cycle) without losing much predictability.

3. Both the upper |km and deep ocean are important for determining
the phase of the MOC

4. Even though the temperature anomalies form on the eastern
boundary, and all the MOC variability occurs on the western
boundary, perturbing S/T on either boundary does not significantly
alter the phase of the MOC



Bowled Double Drake
600 years of simulation after 1500 year spinup

Bowl Bathymetry:
steps at 2.5km and 2km
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Bowled Double Drake:“Perfect” Ensembles
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® ensembles track the MOC
better when starting at a
maximum or minimum
(lower row)
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MOC variability still occurs
on the western boundary

® high ensemble variance and
_ _ low control variance
i implies low PPP.
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when MOC is strong 1 ensembles since they
= assume no knowledge of
? the atmospheric state,
which is likely the main
forcing
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® A change from a flat to bowled bathymetry
suppresses baroclinic instability near the eastern
boundary, switching from an internally forced, highly

predictable MOC to a stochastically forced, less
predictable MOC.

® How do non-normal dynamics change when we
switch to bowled bathymetry?



Non-normal dynamics

® For a stable linear system dP/dt = AP, rapid, transient error
amplification can occur (if the matrix A is non-normal) when

decaying non-orthogonal eigenmodes interact.
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® Reduced space approach (Tziperman et al. 2008): assuming that the
evolution of the principal components of the non-dimensionalized S

and T fields is linear, a propagator matrix B can be obtained.

' Zanna
(2008)

® Given the propagator matrix, the optimal initial conditions of the
principal components are obtained from a generalized eigenvalue
problem subject to either an energy norm or an overturning norm.

® The propagator matrix then predicts the rate of optimal error
amplification.
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Non-normal dynamics

Optimal amplication (energy norm)
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Double Drake

Bowled Double Drake

Double Drake versus Bowled Double Drake

Energy norm THC norm

20

1200

0D = E U Wk =

O D - E Wk W =
T T T

1000}

800

~ 600

400

200f -l

100 0 20 40 60 80 100

500

L= - R R L e

400

300

200

100/}

0 20 40 60 80 100



Bowled Double Drake

CM2.1

Comparison with CM2. |
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Conclusions

MOC in the Double Drake (DDR) is very
predictable, due to internal instability which
produces theta anomalies near eastern boundary
(salinity not important)

DDR with bowled bathymetry appears to be
stochastically driven by the atmosphere, is harder
to predict, though perhaps more realistic

Optimal IC’s in the DDR agree with composite
high MOC theta

Rates of optimal amplification are very similar
between CM2.| and DDR



