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Outline
• Explore predictability of AMOC in models, both 

simple and complex

• Describe predictability experiments with the 
MITgcm- Double Drake (DDR)

• Interpretation in terms of non-normal mode 
dynamics, and comparison of DDR with CM2.1



Exploring predictability in models

• Long term observations of MOC are scarce and 
models display a wide range of MOC decadal 
variability - poorly understood

• Goal is to develop a model-independent, diagnostic 
measure of MOC predictability

• Begin by exploring a model of intermediate 
complexity:  aqua-planet configuration of the MITgcm



Double Drake (aqua-planet model)
theta anomaly at 500m

when MOC is weak

35 years

FLAT BOTTOMED (3km)



Double Drake: “Perfect” Ensembles
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our control integration. To distinguish this method from
the prognostic approach introduced in the next section,
we call it diagnostic potential predictability. DPP at-
tempts to quantify the fraction of long-term variability
that may be distinguished from the internally generated
natural variability, which is not predictable on long time
scales and so may be considered as noise. For this con-
cept the variance of some mean quantity is investigated
to determine whether it is greater than can be accounted
for by sampling error given the noise in the system. The
variances of a certain climate variable from the control
integration (of length l ! nm) are estimated from the
m-year means ( ) and the average of the deviations of2"#

the annual means from them ( ). In a first step, we2"$

test the null hypothesis that the data are independent
random variables, which possess no long time-scale po-
tential predictability. Following Boer (2004), the null
hypothesis is rejected using an F test (e.g., von Storch
and Zwiers 1999) if

2(m % 1)"# & F . (1)n%1,n(m%1)2"$

As noted in Rowell (1998), the one-sided test, which is
not affected by serial correlation in the data, has to be
used. In a second step, DPP is calculated. As Boer
(2004) shows, it can be derived in two ways resulting
in two different estimates for DPP. We use the more
conservative estimate here:

1
2 2" % "#

m
DPP ! , (2)

2"

where " 2 ! ' is the total variance. The longer2 2" "# $

time-scale variance is discounted in this equation to ac-
count for the fact that short-term noise contributes to
the calculated long time-scale variance.

b. Prognostic potential predictability

The ensemble spread (ensemble variance) of a climate
variable X from the ensemble experiments in relation
to its variance in the control integration (" 2) gives a
measure for the PPP. Here, PPP (as a function of the
prediction period t) is defined as the average over all
ensemble experiments:

N M1
2[X (t) % X (t)]! ! i j j

N(M % 1) j!1 i!1
PPP(t) ! 1 % ,

2"
(3)

where Xij is the ith member of the jth ensemble, j isX
the jth ensemble mean, and N (M) is the number of
ensembles (ensemble members). In this study, each of
the three experiments (N ! 3) consists of six ensemble
members and the control integration (M ! 7), which is
regarded as an additional ensemble member. PPP

amounts to a value of 1 for perfect predictability and a
value of 0 for an ensemble spread equal to the variance
of the control integration. The significance of PPP is
estimated, determining if the ensemble variance is dif-
ferent to the variance of the control integration. The F
test is used for this decision; that is, if

1
PPP(t) & 1 % , (4)

FN(M%1),k%1

where the degrees of freedom of the control integration
(k) are reduced with the concept of the decorrelation
time for a first-order autoregressive (AR-1) process [Eq.
(17.11) in von Storch and Zwiers (1999)].
The results are compared with the statistical climate

prediction concept of ‘‘damped persistence.’’ This sta-
tistical forecast method takes into account the clima-
tological mean and the damping coefficient estimated
from the history of the system. It is based on the concept
of Hasselmann’s (1976) stochastic climate model. In this
model, the system is divided into a fast (atmosphere)
and a slow (ocean) component. In the mathematical for-
mulation of the slow processes, atmospheric variability
(weather) is treated as ‘‘noise,’’ which is integrated by
the ocean resulting in low-frequency variability. The
differential equation describing this AR-1 process is giv-
en by

dX(t)
! %(X(t) ' Z(t), (5)

dt

where ( is the damping coefficient and Z(t) is a random
variable with Gaussian characteristics. The average of
several realizations of Eq. (3), that is, the noise-free
solution, is

%(tX(t) ! X ' X e .clim 0 (6)

This equation describes the averaged damping from an
initial anomaly X0 toward the climatological mean Xclim.
The prognostic potential predictability of a hypothetical
ensemble generated by stochastic processes is given by
[see Eq. (8) of Griffies and Bryan (1997b)]

%2(tPPP(t) ! e . (7)

When the damping coefficient is small, the prognostic
potential predictability is high, and a prediction with
this statistical method is reasonable.

4. Results

a. Climate variability

Analyzing the ECHAM5/MPI-OM control integra-
tion, Latif et al. (2004) found a close relationship be-
tween variations of the North Atlantic THC, defined as
the maximum of the meridional overturning circulation
(MOC) at 30)N (i.e., the maximum in the North Atlantic
in the control integration), and SST averaged over the
region 40)–60)N, 50)–10)W. Figure 1a shows the linear
correlation between decadal means of the North Atlantic
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Prognostic Potential Predictability

Predictable for a 35 
year cycle or more

• “perfect” ocean IC’s, with 
perturbed atmospheres

• all variability occurs on the 
western boundary

• predictable for at least one 
35 year cycle



Double Drake: “Perfect” Ensembles ctd.

S and T perturbed Only S perturbed

1. Temperature dominates MOC variability, salinity has little effect
2. Sampling frequency: IC’s in the ocean can be averaged over a fraction 

of an oscillation period (~1/4 cycle) without losing much predictability.
3. Both the upper 1km and deep ocean are important for determining 

the phase of the MOC
4. Even though the temperature anomalies form on the eastern 

boundary, and all the MOC variability occurs on the western 
boundary, perturbing S/T on either boundary does not significantly 
alter the phase of the MOC



Bowled Double Drake
600 years of simulation after 1500 year spinup

Bowl Bathymetry:  
steps at 2.5km and 2km



Bowled Double Drake: “Perfect” Ensembles

• ensembles track the MOC 
better when starting at a 
maximum or minimum 
(lower row)

• MOC variability still occurs 
on the western boundary

• high ensemble variance and 
low control variance 
implies low PPP.

• These are worst case 
ensembles since they 
assume no knowledge of 
the atmospheric state, 
which is likely the main 
forcing

Prognostic Potential Predictabilitysurface meridional velocity 
when MOC is strong



• A change from a flat to bowled bathymetry 
suppresses baroclinic instability near the eastern 
boundary, switching from an internally forced, highly 
predictable MOC to a stochastically forced,  less 
predictable MOC.

• How do non-normal dynamics change when we 
switch to bowled bathymetry?



Non-normal dynamics

Linear stable system  

If A is non-normal                   
eigenvectors     not orthogonal 
! may lead to transient amplification  

(2D) solution at time    : 
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Non-normality & Transient Growth 
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Transient growth: Interaction of non 
orthogonal eigenmodes b/c of 
(1)! Partial initial cancellation 
(2)! Different decay rates 
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Zanna
(2008)
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• For a stable linear system dP/dt = AP,  rapid, transient error 
amplification can occur (if the matrix A is non-normal) when 
decaying non-orthogonal eigenmodes interact.

• Reduced space approach (Tziperman et al. 2008):  assuming that the 
evolution of the principal components of the non-dimensionalized S 
and T fields is linear, a propagator matrix B can be obtained.

• Given the propagator matrix, the optimal initial conditions of the 
principal components are obtained from a generalized eigenvalue 
problem subject to either an energy norm or an overturning norm.

• The propagator matrix then predicts the rate of optimal error 
amplification.



Non-normal dynamics in the Double Drake

Optimal amplication (energy norm) Optimal amplication (THC norm)

optimal IC (THC norm): theta at 500m
theta anomaly at 500m
when MOC is strong



Double Drake versus Bowled Double Drake

Energy norm THC norm
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Comparison with CM2.1

Tziperman et al. (2008)
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Conclusions
• MOC in the Double Drake (DDR) is very 

predictable, due to internal instability which 
produces theta anomalies near eastern boundary 
(salinity not important)

• DDR with bowled bathymetry appears to be 
stochastically driven by the atmosphere, is harder 
to predict, though perhaps more realistic

• Optimal IC’s in the DDR agree with composite 
high MOC theta

• Rates of optimal amplification are very similar 
between CM2.1 and DDR


