Exploring the subpolar to subtropical export pathways of the deep limb of the AMOC with tracers and simulated Lagrangian particles

Stefan Gary and Susan Lozier, Duke University 2nd Annual US AMOC Meeting, June 9, 2010, Miami, FL

Exploring the subpolar to subtropical export pathways of the deep limb of the AMOC with tracers and simulated Lagrangian particles

Stefan Gary and Susan Lozier, Duke University 2nd Annual US AMOC Meeting, June 9, 2010, Miami, FL

Observations: DWBC & Interior Pathway

(1) The DWBC is a stable, equatorward current with higher velocities than the basin interior (Schott et al. 2004, 2006, Watts, 1990).

CFC-11 concentrations are higher in the DWBC than the basin interior

(Smethie et al., 2000, Doney & Jenkins, 1994, Smethie, 1993).

 (2) Most floats in the DWBC in the subpolar gyre exit before reaching the subtropics.
(Bower et al., 2009, Fischer & Schott, 2002, Lavender et al. 2000)

My goal is to resolve these seemingly contradictory observations.

Data Sources

Hydrographic and CFC-11 observations
CARINA v1.0(CARINA group, 2009)GLODAP v1.1(Key et al. 2004)TTO-NAS leg 7(J. Bullister & T. Tanhua, personal comm.)WHOI Line W(J. Toole et al., downloaded May 2010)WOD09(NODC, downloaded April 2010)

ORCA025: 1/4° resolution, global z-coordinate model

(Barnier et al. 2006, Böning & Biastoch, personal communication) CORE hindcast forcing, 1958-2004 (Large & Yeager, 2004) Output: velocity, temperature, salinity, CFC-11 Initial conditions: all zero Restoring: polar regions only, weak surface damping Trajectories calculated with ARIANE (Blanke & Grima, 2010)

Observed and modeled CFC-11 at 70°W

Connectivity of the tracer signal

CFC-11 max inshore 4000m & below 1000m

Connectivity of the tracer signal

CFC-11 max inshore 4000m & below 1000m

Number floats per 625km² Year 1 Month 1 Step 1

(Talley & McCartney, 1982)

 9.7×10^5 Lagrangian particles launched below 1000m at potential vorticities $< 3 \times 10^{-12}$ m⁻¹s⁻¹. Trajectories were integrated in the repeated, 5-day mean 1990 - 2004 ORCA025 velocity fields for 50 years.

30°

20

50°

30°

20° N

12 12 - 16 > 16

Number floats per 625km² Year 1 Month 10 Step 10

9.7x10⁵ Lagrangian particles launched below 1000m at potential vorticities $< 3 \times 10^{-12}$ m⁻¹s⁻¹. Trajectories were integrated in the repeated, 5-day mean 1990 - 2004 ORCA025 velocity fields for 50 years.

Number floats per 625km² Year 2 Month 8 Step 20

9.7x10⁵ Lagrangian particles launched below 1000m at potential vorticities $< 3 \times 10^{-12}$ m⁻¹s⁻¹. Trajectories were integrated in the repeated, 5-day mean 1990 - 2004 ORCA025 velocity fields for 50 years.

50°

30°

20° N

12 12 - 16 > 16

Number floats per 625km² Year 3 Month 6 Step 30

(Talley & McCartney, 1982)

 9.7×10^5 Lagrangian particles launched below 1000m at potential vorticities $< 3 \times 10^{-12}$ m⁻¹s⁻¹. Trajectories were integrated in the repeated, 5-day mean 1990 - 2004 ORCA025 velocity fields for 50 years.

Number floats per 625km² Year 4 Month 4 Step 40

9.7x10⁵ Lagrangian particles launched below 1000m at potential vorticities $< 3 \times 10^{-12}$ m⁻¹s⁻¹. Trajectories were integrated in the repeated, 5-day mean 1990 - 2004 ORCA025 velocity fields for 50 years.

50°

30°

12 - 16 > 16

Number floats per 625km² Year 5 Month 2 Step 50

50°

30°

9.7x10⁵ Lagrangian particles launched below 1000m at potential vorticities $< 3 \times 10^{-12}$ m⁻¹s⁻¹. Trajectories were integrated in the repeated, 5-day mean 1990 - 2004 ORCA025 velocity fields for 50 years.

40°

30°

20

50°

30°

12 - 16 > 16

Number floats per 625km² Year 5 Month 12 Step 60

9.7x10⁵ Lagrangian particles launched below 1000m at potential vorticities $< 3 \times 10^{-12}$ m⁻¹s⁻¹. Trajectories were integrated in the repeated, 5-day mean 1990 - 2004 ORCA025 velocity fields for 50 years.

Number floats per 625km² Year 6 Month 10 Step 70

(Talley & McCartney, 1982)

 9.7×10^5 Lagrangian particles launched below 1000m at potential vorticities $< 3 \times 10^{-12}$ m⁻¹s⁻¹. Trajectories were integrated in the repeated, 5-day mean 1990 - 2004 ORCA025 velocity fields for 50 years.

Number floats per 625km² Year 7 Month 8 Step 80

(Talley & McCartney, 1982)

9.7x10⁵ Lagrangian particles launched below 1000m at potential vorticities $< 3x10^{-12}$ m⁻¹s⁻¹. Trajectories were integrated in the repeated, 5-day mean 1990 - 2004 ORCA025 velocity fields for 50 years.

Number floats per 625km² Year 8 Month 6 Step 90

SW potential vorticity minimum. Beyond these curves, contouring is continued on the $\sigma_{1500} = 34.72 \text{ mg cm}^{-3}$ surface. Contour intervals are 2 × 10⁻¹⁴ cm⁻¹ s⁻¹

(Talley & McCartney, 1982)

9.7x10⁵ Lagrangian particles launched below 1000m at potential vorticities $< 3 \times 10^{-12}$ m⁻¹s⁻¹. Trajectories were integrated in the repeated, 5-day mean 1990 - 2004 ORCA025 velocity fields for 50 years.

Number floats per 625km² Year 9 Month 4 Step 100

(Talley & McCartney, 1982)

 9.7×10^5 Lagrangian particles launched below 1000m at potential vorticities $< 3 \times 10^{-12}$ m⁻¹s⁻¹. Trajectories were integrated in the repeated, 5-day mean 1990 - 2004 ORCA025 velocity fields for 50 years.

Number floats per 625km² Year 17 Month 8 Step 200

(Talley & McCartney, 1982)

9.7x10⁵ Lagrangian particles launched below 1000m at potential vorticities < 3x10⁻¹² m⁻¹s⁻¹. Trajectories were integrated in the repeated, 5-day mean 1990 - 2004 ORCA025 velocity fields for 50 years.

Number floats per 625km² Year 25 Month 12 Step 300

50°

30°

20° N

9.7x10⁵ Lagrangian particles launched below 1000m at potential vorticities $< 3 \times 10^{-12}$ m⁻¹s⁻¹. Trajectories were integrated in the repeated, 5-day mean 1990 - 2004 ORCA025 velocity fields for 50 years.

Probability distribution

Age distribution

60°N 40°N 20°N 1000 2000 80°W 60°W 40°W

Average age of Lagrangian particles in each $\frac{1}{4^{\circ}} \times \frac{1}{4^{\circ}}$ grid box over 50 year simulation [years]

Variability in the age distribution

Conclusions

- (1) Both observations and models exhibit:
 - Stable Deep Western Boundary Current
 - High CFC-11 concentration DWBC core
 - Rapid exit of particles from the DWBC
- (2) Modeled DWBC tracer signal propagation is similar to observations.
- (3) Simulated Lagrangian particles reproduce the observed spreading pathways of LSW and tracer.
- (4) The interior pathway, identified by simulated Lagrangian pathways, is consistent with tracer and float observations. This pathway exports a significant amount of LSW.

References

Barnier, B. et al. 2006. Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy permitting resolution. Oce. Dyn. (56) pp. 543-567.

Blanke, B. and N. Grima. 2010. ARIANE v2.2.6 Laboratoire de Physique des Oceans. http://stockage.univ-brest.fr/~grima/Ariane/

- Bower, A. S., M. S. Lozier, S. F. Gary, and C. W. Böning. 2009. Interior pathways of the North Atlantic Meridional Overturning Circulation. Nature (459) pp. 243-247.
- Doney, S. C. and W. J. Jenkins. 1994. Ventilation of the DWBC and the abyssal western North Atlantic: Estimates from tritium and ³He distributions. JPO (24) pp. 638-659.
- Fischer, J. and F. A. Schott. 2002. Labrador Sea Water tracked by profiling floats From the boundary current to the open North Atlantic. JPO (32) pp. 572-584.
- Lavender, K. L., R. E. Davis, and W. B. Owens. 2000. Mid-depth recirculation observed in the interior Labrador and Irminger Seas by direct velocity measurements. Nature (407) pp. 66-69.
- CARINA group. 2009. Carbon in the Atlantic Ocean Region the CARINA project: Results and Data, Version 1.0. http://cdiac.ornl.gov/ftp/oceans/CARINA/CARINA_Database/CARINA.ATL.V1.0/ Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee. doi:10.3334/CDIAC/otg.CARINA.ATL.V1.0
- Key, R. M., A. Kozyr, C. L. Sabine, K. Lee, R. Wanninkhof, J. L. Bullister, R. A. Feely, F. J. Millero, C. Mordy, and T.-H. Peng (2004), A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP), *Global Biogeochemical Cycles*, 18, GB4031, doi:10.1029/2004GB002247.
- Large, W. G. and S. G. Yeager. 2004. Dirunal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies. NCAR Technical Note NCAR/TN-460+STR. National Center for Atmospheric Research, Boulder, CO.

Schott, F. et al. 2004. Circulation and deep water export at the western exit of the subpolar North Atlantic. JPO (34) pp. 817-843.

Schott, F. et al. 2006. Variability of the DWBC east of the Grand Banks. GRL (33) L21S07, doi:10.1029/2006GL026563.

- Smethie, W. M. 1993. Tracing the thermohaline circulation in the western North Atlantic using chlorofluorocarbons. Prog. Oce.(31) pp. 51-99.
- Smethie, W. M. et al. 2000. Tracing the flow of North Atlantic deep water using chlorofluorocarbons. JGR(105) pp. 14297-14323. Stommel, H. 1958. The abyssal circulation. Deep Sea Research (5) pp. 80-82.
- Talley, L. T., M. S. McCartney. 1982. Distribution and Circulation of Labrador Sea Water. JPO (12) pp. 1189-1205.
- Watts, D. R. 1991. Equatorward currents in temperatures 1.8-6.0°Con the continental slope in the Mid-Atlantic Bight, in: P. C. Chu and J.C. Gascard (Eds.), Deep Convection and Deep Water Formation in the Oceans. Elsevier, Amsterdam, pp. 183-196.

Observed and modeled CFC11 at 44°N

0.0200

40°W 20°W 80°W 60°W

Probability distribution

Age distribution

60°N

Average age of Lagrangian particles in each $\frac{1}{4^{\circ}} \times \frac{1}{4^{\circ}}$ grid box over 50 year simulation [years] 40°N 12 18 24 30 36 42 48 20°N 1000 2000 80°W 60°W 40°W 3000 4000 5000 15 20 25 30 35

Age distribution

Average Lagrangian age [years] CFC-11/CFC-12 ratio age [years] (Smethie et al., 2000)

Variability in the age distribution

Connectivity of the Lagrangian signal

ORCA025 Float probability max inshore below 1000m

Inshore 4000m

Basin interior

