The Gulf Stream Convergence Zone

Niklas Schneider¹, Ryusuke Masunaga², Larry O'Neill³, Bruce Cornuelle^{4,} Thomas Kilpatrick⁴, Masami Nonaka², Justin Small⁵, Shang-Ping Xie⁴ ¹University of Hawai'i at Mānoa, ²Japan Agency for Marine-Earth Science and Technology, ³Oregon State University, ⁴Scripps Institution of Oceanography, ⁵National Center for Atmospheric Research

QuikSCAT winds (o'Neill et al. 2017), AMSR-E sea surface temperatures, 2003-2008

- mean wind divergence dipole, divergence on cold, convergence on warm flanks of Gulf Stream (O'Neill et al. 2017)
- AGCMs require forcing by mesoscale Gulf Stream sea surface temperature front to simulate the Gulf Stream Convergence Zone (e.g. Minobe et al. 2008, Kuwano-Yoshida et al. 2010, Small et al. 2014)

The Gulf Stream Convergence Zone

Niklas Schneider¹, Ryusuke Masunaga², Larry O'Neill³, Bruce Cornuelle^{4,} Thomas Kilpatrick⁴, Masami Nonaka², Justin Small⁵, Shang-Ping Xie⁴ ¹University of Hawai'i at Mānoa, ²Japan Agency for Marine-Earth Science and Technology, ³Oregon State University, ⁴Scripps Institution of Oceanography, ⁵National Center for Atmospheric Research

QuikSCAT winds (o'Neill et al. 2017), AMSR-E sea surface temperatures, 2003-2008

- mean wind divergence dipole, divergence on cold, convergence on warm flanks of Gulf Stream (O'Neill et al. 2017)
- AGCMs require forcing by mesoscale Gulf Stream sea surface temperature front to simulate the Gulf Stream Convergence Zone (e.g. Minobe et al. 2008, Kuwano-Yoshida et al. 2010, Small et al. 2014)

Impacts of storm track and sea surface temperatures

8

7

5

4

QuikSCAT and AMSR-E observations 32°N-46°N, 62°E-52°E 2003-2008, daily

Time average surface wind divergence:

• of order of $0.5 \cdot 10^{-5} s^{-1}$

- a tiny residual of wind divergence due to
 - synoptic winds from warm to cold and cold to warm surface temperatures (Chelton et al. 2001)
 - mid-latitude cyclones and atmospheric fronts (e.g. O'Neill et al. 2017, Masunaga el al. 2020a,b)
- same size as difference of median and mean of negatively skewness distribution (Small et al. 2023)

Impacts of mesoscale sea surface temperatures extend to large-amplitude surface wind divergences

Impacts of storm track and sea surface temperatures

8

7

5

4

QuikSCAT and AMSR-E observations 32°N-46°N, 62°E-52°E 2003-2008, daily

Time average surface wind divergence:

• of order of $0.5 \cdot 10^{-5} s^{-1}$

- a tiny residual of wind divergence due to
 - synoptic winds from warm to cold and cold to warm surface temperatures (Chelton et al. 2001)
 - mid-latitude cyclones and atmospheric fronts (e.g. O'Neill et al. 2017, Masunaga el al. 2020a,b)
- same size as difference of median and mean of negatively skewness distribution (Small et al. 2023)

Impacts of mesoscale sea surface temperatures extend to large-amplitude surface wind divergences

Mid-latitude cyclones and fronts

x/10⁵m

Spatial composites of wind divergence (10⁻⁵s⁻¹, colors), and of surface winds (vectors) and speeds (*ms*⁻¹, contours)

At center (x, y) = 0:

- surface wind divergence
 - $\nabla \cdot \vec{u} < -20 \cdot 10^{-5} s^{-1}$
- surface wind directions within a $\pi/4$ sector of NE, NW, SW and SE

see also O'Neill et al, 2017, Masunaga et al. 2020a,b

Hypothesis for Gulf Stream Convergence Zone

Boundary layer

Impulse response function (Schneider 2020, Masunaga and Schneider 2021)

$$\nabla \cdot \vec{u}(\vec{x}) = \int d\vec{x}' \cdot$$

Ansatz consistent with linear theory (Schneider and Qiu JAS 2015) QuikSCAT equivalent neutral winds (O'Neill et al. JC 2017) AMSR-E sea surface temperatures Gulf Stream 30°N-52°N, 68°E-46°E, 2003-2008 daily scales < 1000km

Damped, doppler-shifted, near-inertial lee-wave, in response to changes of vertical mixing and hydrostatic pressure associated with the plume of warm air downwind of the SST perturbation (Schneider JAS 2020)

 $\hat{e}_3 A(\vec{x}', \hat{e}_U, U) T(\vec{x} - \vec{x}')$

$$\nabla \cdot \vec{u}(\vec{x}) = \int d\vec{x}' \cdot \hat{e}_3 \quad \boldsymbol{A}\left(\vec{x}', \hat{\boldsymbol{e}}\right)$$

$$\overline{\nabla \cdot \vec{u}}(\vec{x}) = \int d\vec{x}' \cdot \hat{e}_3 \quad \overline{A(\vec{x}', \hat{e})}$$

Large-scale winds

QuikSCAT equivalent neutral winds O'Neill et al. 2017 2003-2008 daily Gulf Stream 30°N-52°N, 68°E-46°E scales > 1000 km

Meteorological convention: where winds are coming from

$$\overline{\nabla \cdot \vec{u}}(\vec{x}) = \int d\vec{x}' \cdot \hat{e}_3 \, \overline{A}(\vec{x})$$

$$Gulf$$

$$SST/10K, mean$$

$$\nabla \cdot u/10^{-5}s^{-1}, mean$$

$$Gulf$$

$$\overline{\nabla \cdot \vec{u}}(\vec{x}) = \int d\vec{x}' \cdot \hat{e}_3 \,\overline{A}(\vec{x})$$

Winds from cold to warm/warm to cold

The Gulf Stream Convergence Zone results from

- cyclones and fronts associated with the storm track and from aggregated responses of the atmospheric boundary layer to
- the sea surface temperature front
- large-scale winds associated with the storm track
- A reconstruction of the surface wind divergence recovers
- the mean surface wind divergence dipole
- residuals consistent with cyclones and fronts
- conditional averages as a function of wind direction
- sensitivities to sharpness of the Gulf Stream sea surface temperature front (not shown)
- emergence of pressure effect for averages over time scales longer than ~10 days (not shown) Implications and limitations
- nonlocal approach captures linear/first order dynamics both vertical mixing and pressure effects are involved
- of sea surface temperatures
- Ansatz only captures linearized responses of boundary layer height, precipitation and winds
- et al. 2023)

Conclusions

transient winds organize boundary layer responses (e.g. Foussard et al 2019, Masunaga et al. 2020) • averages combine boundary layer processes, large-scale wind probability density functions and geometry

• feedbacks to large-scale & transient winds relegated to higher order dynamics (e.g. Czaja et al. 2019, Seo

Extra Slides

Comparison with theory Schneider and Qiu, JAS, 2015; Schneider, JAS, 2020

Surface wind divergence response to a Gaussian SST monopole

Doppler-shifted, damped, near-inertial lee-wave, in response to vertical mixing and pressure effects in the plume of warm air downwind of the SST perturbation

$$(\vec{x}', \hat{e}_U, 11ms^{-1}) \quad 1K \ e^{-\frac{(\vec{x} - \vec{x}') \cdot (\vec{x} - \vec{x}')}{2 \cdot (75km)^2}}$$

Averaged Impulse Response Functions

 $\overline{A}^{\phi}(\vec{x}') = \int_{-\pi}^{\pi} d\hat{e}_U \, dU \, A\left(\vec{x}', \hat{e}_U, U\right) \, p(\hat{e}_U, U)$

