Diabatic effects in the evolution of cyclones and storm tracks along the western boundary currents

Thomas Spengler Geophysical Institute, University of Bergen, and Bjerkens Centre for Climate Research, Bergen, Norway

Fumiaki Ogawa, Andrea Marcheggiani, Clemens Spensberger, Hai Bui, Leonidas Tsopouridis, Kristine Haualand

thomas.spengler@uib.no

Atmosphere-Ocean interactions along major SST fronts

Ogawa and Spengler (2019)

W

S

SE

NE

Ν

Atmosphere-Ocean interactions along major SST fronts

Ogawa and Spengler (2019)

Response of extratropical cyclones along SST fronts

Detect and track cyclones

Tsopouridis, Spensberger, and Spengler (2020a,b)

T front	
SST	
imum	
tion	

What if the SST fronts are smoothed?

SST in CNTL and smooth experiment

AFES simulations with realistic SST (CNTL) and smoothed SST in either Kuroshio or Gulf Stream

Tsopouridis, Spengler, and Spensberger (2021)

What if the SST fronts are smoothed?

SST in CNTL and smooth experiment

AFES simulations with realistic SST (CNTL) and smoothed SST in either Kuroshio or Gulf Stream

Tsopouridis, Spengler, and Spensberger (2021)

Haualand and Spengler (2020)

Direct effect

Surface sensible heat fluxes detrimental to growth

Indirect effect

Negative effect readily overcompensated by additional latent heating originating from latent heat fluxes

Haualand and Spengler (2020)

Y (km)

(a) t₀ – 24h

Indirect effect

Main influence through latent heat release associated with downstream latent heat fluxes

(a) t₀ – 24h

Indirect effect

Main influence through latent heat release associated with downstream latent heat fluxes

Baroclinicity in Storm Tracks

Baroclinicity in Storm Tracks

Marcheggiani and Spengler (in prep.)

Baroclinicity in Storm Tracks

SST - Water Cycle - Storm Tracks

Ogawa and Spengler (in prep.)

SST - Water Cycle - Storm Tracks

SST - Water Cycle - Storm Tracks

Conclusions

Extratropical cyclones mainly influenced *indirectly* by surface fluxes through changes in latent heat release associated with SST downstream

Haualand and Spengler (2020)

Bui and Spengler (2021)

Tsopouridis, Spensberger, and Spengler (2020a,b)

Climatological differences when smoothing SST mainly attributable to absence of cyclones

Tsopouridis, Spengler, and Spensberger (2021)

Atmosphere-Ocean interactions occur on *sub-weekly* timescales. Cold air outbreaks play a significant role in sensible and latent heat exchange

Diabatic frontogenesis along SST front mainly in absence of atmospheric fronts

Reeder, Spensberger, and Spengler (2021)

Diabatics play leading role in storm track position and intensity driven by water cycle associated with SST.

Ogawa and Spengler (in prep.) Marcheggiani and Spengler (in prep.) Papritz and Spengler (2015)

Ogawa and Spengler (2019)

What if the SST fronts are smoothed?

mainly attributable to no-cyclone conditions

Tsopouridis, Spengler, and Spensberger (2021)

What about fronts?

Findings based on ERA-Interim confirm idealised frontogenesis model

Significant adiabatic climatological contribution along SST front when atmospheric fronts present

Main diabatic climatological contribution along SST front when no atmospheric front present

