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N  umerous papers have documented an increase in extreme precipitation events in the US 
over the past 30 years or so. The fundamental cause of this trend is a subject of active 

research. The purpose of this study is to examine the meteorological factors that underlie 
the trend, specifically to determine the contributions of the major types of meteorological 
precipitation-producing systems to the observed secular variations in heavy precipitation 
event frequencies. The analysis of the meteorological causes covers the period of 1908-2009. 

A set of 930 long-term stations from the US National Weather Service’s Cooperative Observer 
Network (COOP), distributed throughout the US, is used to identify extreme daily heavy 
precipitation events. A recent project has undertaken the keying of pre-1948 data, which 
hitherto has been mostly in paper form only (Dupigny-Giroux et al. 2007). A subsequent 
project has undertaken the quality control of the newly-keyed data (Kunkel et al. 2005). The 
dataset used for identification of extreme precipitation events is a combination of this newly-
available quality-controlled data and the post-1947 data that has been routinely quality-
controlled through the years by the National Climatic Data Center.

Extreme events are defined as daily precipitation totals exceeding the threshold for a 1 in 5 year 
recurrence. A total of 18,322 events are examined. The meteorological cause of each event is 
identified as one of the following: extratropical cyclone near a front (ETC-FRT), extratropical 
cyclone not near a front (ETC-NFRT), tropical cyclone (TC), mesoscale convective system 
(MCS), air mass convection (AMC), North American Monsoon (NAM), and upslope flow 
(USF). The effort has been intensive, because the assignment of a cause is done by expert 
judgment using several supporting pieces of information, including surface pressure fields 
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Extreme events have large societal 
impacts and are an important 
part of understanding the effects 
of climate change.   Short-term 
events lasting less than a week can 
have important impacts but are 
not well-represented by typical 
monthly or seasonal analyses.  To 
focus on these events and their 
dynamics, US CLIVAR established 
a working group in 2012 on the 
large-scale meteorological patterns 
(LSMPs) associated with short-
term extremes of temperature 
and precipitation for North 
America.  The large-scale patterns 
can be well-resolved in current 
models and observational data, 
and allow for an assessment of 
model dynamics as well as the 
possibility of downscaling.   Two 
key motivating questions are:  what 
are the dynamics of these events 
and how well do current models 
capture the dynamics?

The working group held a workshop 
in Berkeley, CA in August 2013, with 
an emphasis on combining the areas 
of statistics, observational data, 
modeling, and dynamics to explore 
methodologies for identifying and 
analyzing the large-scale patterns 
and to identify key issues.
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The papers in this issue are from 
presentations at the workshop 
and represent the four focus 
areas.  Kenneth Kunkel and David 
Easterling begin with an overview 
of data issues and meteorological 
causes for extreme precipitation. 
Richard Katz and Richard 
Grotjahn provide an example of 
conditional extreme value analysis 
applied to California temperature 
extremes.   William Gutowski and 
John Cassano demonstrate how 
the Self-Organizing Maps (SOM) 
technique can be used to analyze 
LSMPs. Anthony Broccoli and 
Paul Loikith use a compositin0g 
approach to analyze the LSMPS 
associated with daily temperature 
extremes in both observations 
and CMIP5.   Robert Black and 
co-authors analyze cold season 
temperature extremes and their 
links to low frequency modes 
of climate variability in both 
observations and CMIP5 model 
simulations.   Finally, Randall 
Dole and coauthors conduct a case 
study of the March 2012 heat wave, 
estimating the relative contributions 
from trend, boundary conditions, 
and initial conditions.   Together, 
these papers highlight the 
importance of combining the four 
focus areas and demonstrate the 
utility of the LSMP methodology.

The Working Group members are 
currently working on two review 
papers on this subject.

from reanalysis, maps of surface temperature and precipitation, the Daily Weather Map 
series, and tropical cyclone tracks from the North Atlantic Hurricane Database (HURDAT). 
Once individual station events have been assigned a cause, regional and national statistics are 
computed using a gridded version of the station cause assignments, so as not to overweight 
regions with higher densities of stations (see Kunkel et al. 2012 for details).

The percentage of events ascribed to each cause are 54% for ETC-FRT, 24% for ETC-NFRT, 
13% for TC, 5% for MCS, 3% for NAM, 1% for AMC, and 0.1% for USF (Fig. 1). Altogether 
the two ETC types and TCs account for 90% of the extreme events. As might be expected, 
there are substantial regional variations in the dominant causes of extreme events (Fig. 2). 
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Fig. 1 The fraction (%) of extreme precipitation events assigned to each meteorological cause. 
“ETC” = extratropical cyclone.

Fig. 2 Regional frequency (%) of the meteorological types associated with the occurrence of 
extreme precipitation events for 1908-2009 (from Kunkel et al. 2012).
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In the Northwest and West regions, 
ETCs account for 80% or more of 
the events. The FRT category is the 
dominant cause in the remaining 
regions with the exception of the 
Southeast where TCs are the most 
frequent cause. MCSs are most 
common in the West North Central 
and East North Central where they 
are the 3rd most frequent cause. 
TCs are a prominent cause in the 
Northeast and South, as well as the 
Southeast. The NAM is responsible 
for 21% of the events in the 
Southwest. The minor categories of 
AMC and USF occur primarily in 
the Southeast (2%) and Southwest 
(2%), respectively.

The overall upward trend in the 
frequency of extreme events 
is primarily a warm season 
phenomenon, and concentrated in 
the late summer/early fall (Kunkel 
et al. 2012). In fact, the entire annual 
trend is explained by increases in 
the 5-month warm season period of 
June through October. The upward 
trend is largely driven by increases 

in events associated with fronts (ETC-FRT) and tropical cyclones (Fig. 3). Statistically significant upward trends in the frontal 
category are found in five of the nine regions: Northeast, East North Central, Central, West North Central, and South.

Given the overall upward trend in total events and in events caused by fronts and tropical cyclones, a question arises whether there 
are more systems causing extreme events or whether there are more extreme events per system. For fronts, there is no climatology 
of fronts that is suitable for detection of trends in either the number or strength of fronts. For tropical cyclones, analysis of 
US landfalling events does not indicate a trend (e.g., Landsea 2005). An analysis of the average number of station events that 
occur within the same large precipitation field associated with individual meteorological systems suggests that there has been an 
increasing trend in the number of extreme events per meteorological system (Kunkel et al. 2012).

The dataset of cause assignments is available from the authors. An updating of the dataset through 2013 is currently being performed.
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Fig. 3 Annual time series of the number of extreme events per station caused by ETCs 
(blue), fronts (red), and tropical cyclones (green) (from Kunkel et al. 2012).

3US CLIVAR VARIATIONS • Winter 2014 • Vol. 12, No. 1

U S  C L I V A R  V A R I A T I O N S

10.1175/BAMS
10.1175/JTECH
10.1175/JHM
10.1038/nature


U S  C L I V A R  V A R I A T I O N S

I  ntroduction: There is a long tradition of using statistical methods 
based on extreme value theory to estimate the probability of, or 

return levels for, extreme weather and climate events (Gumbel 
1958). Because only a single static probability distribution is 
used, these methods can be termed unconditional extreme value 
analysis. In recent years, at least a few papers have made use of 
statistical methods based on extreme value theory to detect trends 
in the frequency and intensity of extreme weather and climate 
events; that is, allowing the extremal distribution to gradually 
shift over time (Brown et al. 2008).

Only rarely have extreme value distributions for weather and 
climate extremes been fitted conditional on indices of atmospheric 
or oceanic circulation, whether climate modes such as the El Niño-
Southern Oscillation phenomenon or large-scale meteorological 
patterns (LSMPs) (Brown et al. 2008). Because the extreme 
value distribution randomly shifts depending on the value of the 
circulation index, such methods could be termed conditional 
extreme value analysis. Using time series of daily maximum 
temperature for a set of stations in the California Central Valley, we 
will demonstrate how indices of LSMPs can be incorporated into a 
conditional extreme value analysis for high temperature extremes.

Unconditional extreme value analysis: Classical extreme value 
analysis involves single (or static) probability distributions (i.e., that 
do not evolve over time). The Extremal Types Theorem, based on 
the concept of “max stability,” states that the limiting distribution 
of the maximum of a sequence of random variables, suitably 
normalized, is the generalized extreme value (GEV) (Coles 2001). 
Here, as we shall see, the sequence of random variables need not 
be temporally independent. Further, conditional extreme value 
analysis (to be discussed next) provides one avenue for relaxing the 
assumption that the random variables be identically distributed.

The GEV distribution has three parameters: (i) a location parameter 
that centers the distribution; (ii) a scale parameter that governs 
the spread of the distribution; and (iii) a shape parameter that 
governs how rapidly the upper tail of the distribution decays (by 

convention, a negative shape parameter indicates a bounded upper 
tail as would be anticipated for daily maximum temperature). The 
block maxima approach to unconditional extreme value analysis 
entails fitting the GEV distribution to observed maxima (e.g., 
seasonal highest daily maximum temperature).

An alternative to the block maxima approach, potentially more 
informative and more powerful, is the peaks over threshold 
(POT) approach (Coles 2001). This approach entails the statistical 
modeling of the two most basic components of extremes: (i) the 
rate of occurrence of an extreme event (e.g., exceeding a high 
threshold); and (ii) the intensity of a given extreme event (e.g., 
the excess over a high threshold or by how much it is exceeded). 
The so-called Law of Small Numbers implies that the frequency 
of occurrence of sufficiently rare extreme events should have 
approximately a Poisson distribution, and extreme value theory 
implies that the excess over a sufficiently high threshold should 
have approximately a generalized Pareto (GP) distribution (Coles 
2001). The Poisson distribution has a single rate parameter that 
equals both its mean and variance, and the GP distribution 
has two parameters: (i) a scale parameter that governs the 
“size” of the excesses; and (ii) a shape parameter with the same 
interpretation as that of the GEV distribution.

Conditional extreme value analysis: The basic idea of conditional 
extreme value analysis is to allow the extremal distribution to be 
dynamic; that is, shifting depending on the observed value of an 
index of a climate mode or of an LSMP. For example, Sillmann 
et al. (2011) analyzed the lowest winter temperature at grid 
points in Europe for a reanalysis product and for climate model 
simulations. The GEV distribution was fitted conditional on the 
value of an index of North Atlantic atmospheric blocking, with 
the location and scale parameters varying as functions of the 
index. In statistical terminology, the conditioning variable (e.g., a 
blocking index) is called a covariate.

Similarly, the distributions in the POT approach can be 
conditioned on an LSMP index. In our application to California 
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temperature extremes, the log-transformed rate parameter of the 
Poisson distribution and the log-transformed scale parameter 
of the GP distribution will both be varied as linear functions 
of an LSMP index (the logarithmic transformation is applied 
to constrain the parameters to be positive), with the shape 
parameter of the GP being held constant. 

Application to California temperature extremes: The climate data 
consist of time series of daily maximum temperature at three sites, 
Bakersfield, Fresno, and Red Bluff, in the California Central Valley 
during the summer season, 16 June to 15 September, over the time 
period 1951-2005. As a measure of how extreme the temperature is 
over the entire valley, we extracted the single highest temperature 
each day. Despite the considerable distances among these three 
sites, the climatological distributions of summer daily maximum 
temperatures are quite similar. So the valley-wide temperature 
extreme is not dominated by a single site.

The LSMP index is discussed in detail in Grotjahn (2011). Briefly, 
the index is defined by a multi-step process that begins by choosing 
“target dates.” The target dates satisfy a set of criteria for the extreme 
event type of interest; here, each date (or first of consecutive dates) 
is when all three stations spanning the California Central Valley 
have surface maximum temperature anomaly at least 1.7 standard 
deviations above normal. These dates happen about 1% of the time. 
The target dates form an ensemble for each upper air field. Ensemble 
averages are formed of anomalies of temperature at 850hPa and 
meridional wind at 700hPa. These ensemble averages are the 
LSMPs referred to in the present paper and shown in Grotjahn and 
Faure (2008). The LSMPs have highly significant ridges and troughs 
spanning the North Pacific and across North America, where 
significance is determined by bootstrap resampling: comparing the 
ensemble mean to randomly drawn ensembles at each grid point. 
Consistency between the ensemble members is assessed using 
“sign counts” such that only select areas of the ensemble averages 
(where all members of the ensemble have the same sign) are used 
to calculate an unnormalized projection. Those select areas sample 
the significant ridges and troughs of the LSMPs. Finally, the daily 
LSMP index is a weighted average of those projections of the target 
ensembles onto each corresponding daily field. The weighting is 
chosen to optimize when index values exceed a threshold on dates 
matching target dates over the 1979-1988 training period. Hence, 
the index estimates how strongly and how similar each day’s upper 
air fields are to the LSMPs during prior extreme events.

Fig. 1 shows a scatterplot of the highest daily maximum temperature 
over the California Central Valley versus the LSMP. The horizontal 
line on the scatterplot indicates a threshold of 110.5 °F to be used in 

the extreme value analysis. Diagnostics (Coles 2001) indicate that 
this threshold is sufficiently high to provide an adequate fit of the 
GP distribution to the temperature excesses. The overall scatterplot 
suggests a strong relationship between the index and temperature. 
Nevertheless, our focus is on the points above the threshold for 
which the nature of the relationship is less clear.

To account for the marked temporal dependence of daily 
maximum temperature at high levels, the data have been 
declustered. That is, if the temperature exceeds the high threshold 
(in our case, 110.5 °F) on two or more consecutive days, only the 
single highest temperature within the cluster is used. This type 
of adjustment is termed “runs declustering” with declustering 
parameter r = 1 (Coles 2001). In other words, each extreme event 
actually corresponds to a run of consecutive days on which the 
maximum temperature exceeds the threshold, typically called a 
hot spell in the climate literature. 

For simplicity, the LSMP index for the single day on which 
the cluster maxima occurs is used as a covariate. All of 
the statistical analysis was performed using functions in 
extRemes, an open source R package (Gilleland and Katz 2011).  

U S  C L I V A R  V A R I A T I O N S

Fig. 1 Scatterplot of highest daily maximum temperature over 
California Central Valley (among Bakersfield, Fresno, and Red 
Bluff) versus an atmospheric circulation index, 16 June to 15 
September, 1951-2005. Horizontal red line indicates threshold of 
110.5 °F used in extreme value analysis.
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Fig. 2 summarizes the results of applying the POT approach to 
statistically model the relationship between the highest daily 
maximum temperature in the California Central Valley and the 
LSMP index during the summer season.

The top diagram in Fig. 2 shows the fit of a Poisson distribution 
to the rate of clusters of daily maximum temperature exceeding 
the threshold, where the log-transformed rate parameter is 
assumed to be a linear function of the LSMP index. To aid in 
visualizing the goodness-of-fit, a locally smoothed version of the 
scatterplot is also included. The fitted statistical model clearly 
captures the nature of the nonlinearity in the relationship. 
Further, a likelihood ratio test (Coles 2001), comparing the fit of 
the statistical model with the LSMP index as a covariate to the fit 
of a single Poisson distribution, yields a P-value of virtually zero 
(i.e., overwhelming statistical significance).

The bottom diagram in Fig. 2 shows the fit of a GP distribution 
to the excess in cluster maxima over the high threshold, where 
the log-transformed scale parameter is assumed to be a linear 
function of the LSMP index. For simplicity, only the estimated 
median of the GP distribution is shown. It rises nonlinearly with 
the LSMP index, but the high degree of scatter makes it difficult 
to assess the nature of this relationship. Nevertheless, a likelihood 
ratio test (Coles 2001), comparing the fit of a GP distribution with 
the LSMP index as a covariate to the fit of a single GP distribution, 
yields a P-value of about 0.002 (i.e., strong statistical significance).

It should be noted that the LSMP index was constructed on the 
basis of the examination of atmospheric circulation patterns on 
extreme hot days in the Central Valley, using 10 out of the 55 years 
of data analyzed in the present paper. So these statistical tests of 
significance should be viewed as a confirmation of the utility of 
the index, not as an independent analysis.

Discussion: Our analysis has focused on high temperature 
clusters, where the definition of a cluster is based on statistical 
considerations. Hot spells or heat waves may have more complex 
definitions that are more meteorologically meaningful (e.g., a heat 
wave would not necessarily end with the maximum temperature 
falling below the high threshold for only one day; Meehl and 
Tebaldi 2004). Further, other characteristics of hot spells or 
heat waves, including the cluster length, should be statistically 
modeled as well. Initial attempts to do this include Furrer et al. 
(2010), which included trend components in a statistical model 
for hot spells or heat waves, and Photiadou et al. (2014), which 
included conditioning on indices of atmospheric blocking and 
climate modes in a similar form of statistical model.

Fig. 2 Top diagram shows rate parameter of Poisson distribution 
(red curve) fit to occurrence of cluster of temperatures exceeding 
threshold of 110.5 °F (black dots: value of “1” indicates 
occurrence, “0” non-occurrence) with log-linear relationship to 
atmospheric circulation index and blue dots giving corresponding 
empirical rate of threshold exceedance. Bottom diagram shows 
median of GP distribution (red curve) fit to excess in temperature 
over threshold for cluster maxima (blue dots) with log-linear 
relationship to circulation index. 
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I  ntroduction: A climatological goal of extremes analysis is to 
extract common physical behavior across extreme events so as 

to gain insight into the causes and maintenance of extreme events. 
Depending on the phenomenon, such analysis may rely on several 
fields, such as mean sea-level pressure; mass, energy, moisture 
and momentum fluxes; and winds, temperature, humidity and 
geopotential heights at various atmospheric levels. One way of 
distilling common physical behavior from multiple fields is to 
form composites across many extreme events at the time of event 
occurrence and perhaps also at times preceding the events.

However, if there are multiple causes of extremes or if different 
events occur in different parts of an analysis region, then 
compositing all events may yield a muddled, and perhaps 
misleading, picture. Methods that group together events with 
similar characteristics can avoid this problem and potentially 
allow more physically relevant composites. One approach to this 
is Self-Organizing Maps (SOMs).

SOMs – Overview: Self-Organizing Maps (SOMs; Kohonen 1995) 
are two-dimensional arrays of maps that display characteristic 
behavior patterns of a field (e.g., Cavazos 2000; Hewitson and 
Crane 2002; Gutowski et al. 2004; Cassano et al. 2007). In 
comparison with more traditional approaches to investigating 
multi-dimensional data (e.g. empirical orthogonal functions) 
the SOM approach compares favorably (Reusch et al. 2005) 
with distinct advantages in interpreting underlying physical 
processes. SOMs can reveal observed and simulated evolution 
of targeted fields, including periodic behavior, provide a 
basis for estimating statistical significance of climate-change 
differences, and support conditional compositing of interacting 
fields and development of probability distributions. Using 
SOMs, one can assess physical interactions within a model and, 
further, determine how well a model agrees with observations 
for sound, physical reasons. SOMs thus give a quantitative, 
dynamic perspective on climatic behavior and differences 
between periods and data sources examined. 

Self-Organizing Maps: A method for analyzing  
Large-Scale Meteorological Patterns  

associated with extreme events
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The SOM array is a discretization of the continuous pattern space 
occupied by the field examined. Fig. 1 gives an example of a SOM 
array of synoptic weather patterns, as defined by sea level pressure, 
over a region centered on Alaska. Individual maps in the array 
represent nodes in a projection of this continuous space onto a 
two-dimensional surface, with the size of the array determined by 
the degree of spatial discretization of the SOM space one feels is 
needed for the analysis at hand. The two dimensions show the two 
primary pattern transitions for the field examined. The input maps 
themselves determine the degree and types of pattern transitions, 
hence the “self-organizing” nature of the resulting array. The 
SOM node array is trained on a sequence of input maps through 
an artificial neural net technique. In contrast to eigenvector 
techniques like empirical orthogonal functions, maps in the SOM 
array do not necessarily favor the largest scales in the input data, 
but rather the scales most relevant to the field for the domain and 
resolution examined, with emphasis on high variance behavior. 
Consequently, SOMs can extract nonlinear pattern changes 
in fields, such as shifts in strong gradients, which may not be 
represented well by truncated sums of spatial modes. In addition, 
the pattern at each node is essentially a composite of input maps 
with similar spatial distribution for the field examined, so that 
patterns in the SOM array not only show archetypal patterns of 
the field examined, but they directly lend themselves to physical 
interpretation of actual climatic behavior.

SOM generation uses an iterative procedure that compares each 
member of an input sequence of maps, such as SLP (sea level 
pressure) or departures of SLP from its domain average, to an 
existing set and nudges the closest map (node) in the set toward the 
input map. To ensure relatively smooth transitions between SOM 
maps and thus retain pattern-space continuity, the procedure also 
nudges toward the input map all SOM nodes in a neighborhood 
about the best-fit node, with the degree of nudging and 
neighborhood size shrinking with iteration. A well-constructed 
SOM set is independent of initial conditions, which one can assess 
through tests using alternative initial conditions and sequences 
of map ingestion. A well-constructed SOM set minimizes the net 
“distance” between each input map and its nearest SOM node. 
For most applications, a Euclidian norm provides the “distance” 
separating the input map and its nearest node. The procedure 
producing Fig. 1 used 250,000 iterations with a set of about 2,000 
input maps of daily SLP. This procedure required less than 30 
minutes on a single, in-house computing node. 

With a trained SOM array, one can analyze other fields as 
a function of each synoptic pattern identified by the SOM. 
For example, one can identify nodes where extreme daily 
precipitation events occur (Fig. 2). In this example, extreme 
events tend to cluster in sections of the overall SOM space, in 
contrast to the climatological frequency distribution, which 
includes all nodes and is much smoother (not shown). The 
clustering helps to segregate different types of extreme events. 

Fig. 1 Self-organizing map of synoptic weather patterns in a region 
focused on Alaska. The SOM array maps give the departure (in 
hPa) of sea level pressure (SLP) from the domain averaged SLP. 
The SOM used daily December-January-February (DJF) SLP 
for 1997-2007 from ERA-Interim reanalyses and model output. 
Locations with elevation exceeding 500 m are not included in 
the maps to avoid using SLP in regions strongly influenced by 
methods used to extrapolate SLP from surface pressure. 

Fig. 2 Frequency in SOM space of SLP nodes accessed on days 
with extreme (99th percentile) precipitation during DJF. SLP for 
each node appears in Fig. 1.
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Fig. 3 shows extreme precipitation occurring in different parts 
of Alaska in a manner consistent with associated SLP (Fig. 1). It 
is this link between large-scale synoptic weather patterns, which 
are reasonably well simulated by global and regional climate 
models, and local events that motivates this approach to study 
changes in extreme precipitation and temperature events in the 
context of large-scale features and their modulation as seen in 
observed and simulated behavior.

The SOM analysis extends further than simply identifying 
differences, however, by also allowing one to quantify the degree of 
agreement or disagreement between two data sets. For example, one 

can evaluate the degree of overlap between SOM-space frequency 
distributions for observed and simulated extremes. Or, by comparing 
simulations, one can assess the probability that a projected future 
climate will have more or fewer episodes with circulation patterns 
prone to substantial precipitation. One can construct estimates of 
the significance of differences through procedures such as random 
scrambling of each map’s assigned time periods to arrive at the 
percent likelihood that emergent pattern differences are not simply 
the result of finite sampling of random patterns (Cassano et al. 2007). 

An important strength of SOM analysis is its ability to quantify 
time evolution. This can give additional insight on processes 
leading to extreme behavior. For example, we have found that 
days leading up to an extreme precipitation event tend to fall on 
nodes in the same part of SOM space as for the extreme-event 
day, but move rapidly to elsewhere in SOM space immediately 
after the event. Such slow circulation evolution allows substantial  
off–shore fetch to develop that supplies the moisture for an 
extreme event. This behavior mimics that found for central 
US extremes in both regional (Kawazoe and Gutowski 2013a) 
and global (Kawazoe and Gutowski 2013b) models. In addition, 
through evaluation of evolution through SOM space, one can 

depict the degree of agreement 
between observed and simulated 
behavior as well as features that 
distinguish extreme events from non-
extreme events whose SLP patterns 
fall onto the same SOM node. 

SOMs - Other examples: Application 
of SOMs in climate studies has 
occurred for several years in a variety 
of applications. Hewitson and Crane 
(2002) provide a general description 
of SOM analysis with details not 
covered here and with an illustrative 
application to climatological 
precipitation trends. Cavazos (2000) 
provides one of the earliest examples, 
using SOM analysis to explore extreme 
and climatological precipitation in 
the Balkans. Cavazos (2000) is also 
an example of combining several 
different variables (a North Atlantic 
Oscillation index and local values 
of humidity, geopotential height 
and thickness) to form a “map” of 
relationships among variables. 

In contrast, more typical SOM analyses have used just one 
field. Gutowski et al. (2004) use monthly precipitation from 
observations and a simulation to evaluate the consistency of 
model precipitation distributions with observation. Cassano et al. 
(2006) use a SOM analysis of SLP to study extreme wind events 
at Point Barrow, Alaska. Schuenemann and Cassano (2009, 2010) 
also use SLP in a SOM analysis to evaluate the circulation and 
precipitation behavior for Greenland in a set of GCMs. Their 
analysis allows them to identify the GCMs that performed best 

Fig. 3 Precipitation (mm/d) on two different days with extreme precipitation events (lower 
panels) and the SLP anomaly in SOM space (see Fig. 1) for each day, marked by the 
circles connected to each lower panel.
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versus observed behavior and then use those GCMs to evaluate 
projected changes in circulation and thermodynamic factors 
influencing Greenland precipitation.

Typical SOM analyses use an array of many (>15) pattern maps. 
Feldstein (2013), however, shows that a very succinct array of only 
four maps can provide sufficient detail to distinguish important 
differences of large-scale behavior. In his case, states of the 
stratospheric polar vortex are identified that affect the midlatitude 
teleconnection response to the Madden-Julian oscillation, with 
attendant effects on probabilistic extreme weather forecasts.

Cautions: As with any analysis method, good practice requires 
thoughtful use. For example, the domain analyzed must be 
representative of relevant behavior. If the domain is too large, then 
the SOM patterns may be dominated by behavior far from the 
region of interest and thus reveal little about large-scale influences 
on extreme events. If the domain is too small, it may not adequately 
depict the full large-scale behavior relevant to extreme events.

The field depicted in the SOM must be relevant to the processes 
governing extreme events. Thus, in the extratropics, fields that 
depict circulation such as sea-level pressure or 500-hPa heights 
may be useful because they indicate important transport 
patterns, but 100-hPa heights may be irrelevant. Similarly, very 
noisy fields, such as daily precipitation, may not be useful in a 
SOM analysis [though longer time averages of precipitation may 
work well, e.g., Gutowski et al. (2004)].

As mentioned above, the SOM array represents a discretization 
of the field’s pattern space. Too large an array may yield many 
SOM nodes that differ little from their neighbors and thus do 
little to display transitions in pattern space. One telltale sign of 
this would be a SOM whose frequency distribution for the full 
climatology has many nodes with zero frequency. Often in this 
case, the climatological frequency distribution of nodes accessed 
by the input field is rather noisy, undermining any statistical 
significance testing. Similarly, too small an array may not provide 
sufficient segregation of field behavior patterns, though the user 
needs to judge in terms of the targeted behavior how small an 
array is sufficient (cf. Feldstein 2013).

Finally, the SOM algorithm allows some degree of control on 
how tightly the nodes fit the patterns of the input maps. Too tight 
a fit can yield a SOM array of maps that do not exhibit smooth 
transitions through pattern space and instead may appear as a 
nearly random set of maps, thus undermining use of the SOM 
array for depicting time evolution of events.

Summary: Self-organizing maps provide a useful method for 
depicting typical large-scale meteorological patterns associated 
with extreme events. They also can help segregate different types 
of events and show the evolution of meteorological patterns 
leading into events. As with any analysis method, care is required 
for proper use, as noted by the cautions above.
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S  tudying the large scale meteorological patterns (LSMPs) 
associated with extreme temperature events presents 

challenges in analyzing and displaying substantial amounts of 
information. To produce sufficiently large samples requires the 
analysis of decades of observations or model output at relatively 
high temporal resolution, typically daily or higher. In addition, 
any analysis methods must be capable of capturing spatial 
variations in LSMPs. In this article, we briefly discuss some 
approaches for diagnosing LSMPs in models and observations 
and displaying the results. We have used these approaches in 
our recent studies of temperature extremes in North America 
(Loikith and Broccoli 2012, Loikith and Broccoli 2014).

Our analyses utilize several data sources. Daily maximum 
and minimum temperature anomalies are obtained from the 
HadGHCND data set, which is a gridded (2.5° by 3.75° latitude-
longitude) product with a global domain covering the period 
1950-2011 (Caesar et al. 2006). Atmospheric circulation variables 
are obtained from the NCEP/NCAR Reanalysis 1 (Kalnay et al. 
1996), a global data set with comparable resolution (2.5° by 2.5°). 
Output from state-of-art climate models is obtained from historical 
simulations archived in association with phase 5 of the Coupled 
Model Intercomparison Project (Taylor et al. 2012). Our analyses 
use data and model output from the period 1961-1990.

The construction of composite patterns is a simple starting point 
for the analysis of LSMPs associated with temperature extremes. 
For each of the grid points of the HadGHCND data set in North 
America, we construct composites by averaging the spatial 
distribution of a chosen atmospheric variable over the days in the 
analysis period in which temperature anomalies are in the tails (i.e., 
the coldest and warmest 5%) of their frequency distribution. This 
analysis, which can also be performed on output from the CMIP5 
models remapped to the HadGHCND grid, yields composite maps 
for each of the 315 grid points. Interpreting such local composites 
is straightforward in principle, as is comparing those extracted 

from models with observations, but the large number of grid 
points makes this approach impractical in application.

To synthesize the information from the local composites into a 
more succinct form, a “grand composite” is constructed from 
the local composites. The grand composite is constructed by first 
remapping each local composite to a polar coordinate grid that 
is referenced to the location experiencing a daily temperature 
extreme, then averaging these remapped local composites 
across all of the 315 HadGHCND grid points in North America. 
Examples of such grand composites are depicted in Fig. 1, which 
include the patterns of 500hPa geopotential height (Z500) and sea 
level pressure (SLP) associated with warm and cold maximum 
and minimum temperature extremes during January and July for 
observations and the multimodel ensemble mean. A metric of how 
well the individual local composites are represented by the grand 
composite is the median value of the pattern correlation between 
each local composite and the corresponding grand composite. The 
median pattern correlations range from 0.85 to 0.93 for Z500 and 
0.49 to 0.78 for SLP, indicating that midtropospheric circulation 
patterns associated with temperature extremes are more consistent 
across locations than near-surface circulation patterns.

Spatial variations in the degree of similarity between the 
local composites and the grand composite are also of interest 
in determining locations in which the LSMPs associated 
with extreme temperatures may be distinctive. Mapping the 
pattern correlation between each local composite and the 
corresponding grand composite enables the identification of 
such locations. As an example, the map of pattern correlations 
for the SLP pattern associated with warm January maximum 
temperatures (not shown) indicates values above 0.5 for most 
of North America. In contrast, values are much lower in the 
southwestern United States. Examination of a local composite 
from this region reveals that warm January maximum 
temperatures are associated with high local SLP anomalies 
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and weak pressure gradients rather than the anomalous 
southerly f low implied in the grand composite. The proximity 
of the ocean and the barrier effect of the Rocky Mountains are 
important inf luences on extreme temperatures in this region.

The degree of symmetry between the LSMPs associated with 
warm and cold extremes is also of interest. As evident in a 
visual inspection of Fig. 1, the grand composites exhibit a high 
degree of symmetry, both in observations and models, with the 
patterns for cold extremes closely resembling those for warm 
extremes except for a change in sign. But do individual locations 
exhibit the same degree of symmetry? We address this question 
by developing a metric of symmetry that is simply the pattern 
correlation between the local composite for corresponding warm 
and cold extremes multiplied by -1 (so that perfect symmetry 
would have a value of 1). Fig. 2 depicts the symmetry metric for 
Z500 and SLP composites associated with January maximum 
temperatures in models and observations. Symmetry values are 
greater than 0.6 over most of North America for SLP and greater 
than 0.8 for Z500, with good agreement between the simulated 
and observed patterns. Much lower values of symmetry are 
noted in the southwestern United States, where a distinctive SLP 
pattern associated with warm January maximum temperatures 
was noted earlier in this article. The low values of symmetry 
indicate that the prevailing low-level circulation associated 

with warm extremes is not simply of opposite sign of the LSMP 
accompanying cold extremes. Such asymmetry is likely due to 
the influence of the nearby ocean and mountains.

Another aspect of the relationship between LSMPs and 
temperature extremes is whether the circulation patterns 
accompanying such extremes are linearly amplified versions of 
the patterns associated with smaller temperature anomalies. We 
estimate the pattern linearity for each HadGHCND grid point for 
January and July maximum and minimum temperatures by using 
circulation variables on the polar coordinate grid. First, we regress 
SLP and Z500 on the temperature anomalies using all days in the 
sample, yielding a set of regression coefficients for each variable at 
each point on the polar coordinate grid. The resulting regression 
coefficients are multiplied by the mean temperature anomaly for 
events in the upper and lower 5% of the temperature anomaly 

Fig. 1 Grand composites of Z500 (contours) and SLP (shading) 
anomalies for cold (coldest 5%) January, warm (warmest 5%) 
January, cold July, and warm July maximum (left to right) 
temperature days for observations and CMIP5 models. The top 
row is based on HadGHCND temperature anomalies and NCEP/
NCAR Reanalysis 1 and the bottom row is the CMIP5 multi-model 
ensemble mean. Median pattern correlation values with individual 
composite patterns are given in parentheses (Z500, SLP) above 
each map (from Loikith and Broccoli 2014).

Fig. 2 Maps of symmetry of the relationship between Z500 and 
SLP anomalies and January and July daily maximum temperature 
extremes from observations and models. The model results depict 
the median value across all 17 models at each location (from 
Loikith and Broccoli 2014).
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distribution to produce an estimate of what the circulation 
pattern for such extreme events would look like if the relationship 
between temperature and circulation were linear. The root-mean-
square difference between the actual circulation pattern and the 
hypothetical linear estimate is computed and normalized by 
the standard deviation of the composite pattern. By this metric, 
a value of zero would indicate a perfect linear relationship with 
higher values indicative of greater nonlinearity. As defined in 
this way, linearity is related to symmetry (i.e., a perfectly linear 
pattern is perfectly symmetric) but also provides complementary 
information. For instance, because the linearity metric is defined 
separately for warm and cold extremes, it can be used to determine 
which tail of the distribution is contributing to asymmetry.

We use all of the analysis methods and metrics discussed in 
this article to develop a better understanding of the observed 
relationships between extreme temperature events and the LSMPs 
that accompany them (Loikith and Broccoli 2012). We also use these 
methods to evaluate the performance of state-of-art climate models 

in simulating such relationships (Loikith and Broccoli 2014). Future 
work will examine future climate simulations to determine to what 
extent these relationships may change in a warming climate.
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I  ntraseasonal anomalous temperature regime (ATR) events 
provide marked impacts upon the United States (Peterson et al. 

2013). During winter cold air outbreaks (CAOs) and warm waves 
(WWs) directly affect energy consumption, local agriculture 
and human health leading to substantial economic effects. The 
regional impact of CAOs is pronounced in the South and along 
the mid-Atlantic coast, where Arctic air outbreaks tend to be 
less common (Cellitti et al. 2006). Past studies of winter ATRs 
have focused upon CAO events with little attention given to 
WW events. Although there is little evidence for the existence of 
long-term trends in CAO frequency, past studies do indicate that 
regional CAO frequency over the US is modulated by large-scale 
low frequency modes of variability including the Pacific-North 
American (PNA) teleconnection pattern, the North Atlantic (or 
Arctic) Oscillation (NAO) and the extratropical response to El-
Nino Southern Oscillation (ENSO) (Walsh et al. 2001; Celitti 
et al. 2006; Lim and Schubert 2011). We review (a) an updated 
ATR trend analysis including a consideration of WWs, (b) a 

quantification of the role of low frequency modes in the regional 
interannual modulation of ATR frequency and (c) an assessment 
of CMIP5 models in representing ATR behavior including the 
seasonal modulation by low frequency modes (Westby et al. 
2013; Lee and Black 2013). The analyses employ NCEP/NCAR 
reanalyses (NNR) for the period 1949 – 2011 and model output 
from historical CMIP5 simulations for the period 1950 – 2005.

There is no unique method for defining anomalous temperature 
regimes, and we choose to define events in terms of anomalies in 
daily-mean surface air temperature (Walsh et al. 2001). Specifically, 
we adopt a local metric referred to as the “impact factor” which 
incorporates the amplitude of the temperature anomaly. For each 
point (or region) considered, anomalies are defined as departures 
of daily-mean temperature from the (smoothed) climatological 
seasonal cycle during December, January and February (DJF). 
Prior to calculating anomalies, the daily data are first detrended 
by removing the long-term trend in seasonal mean temperature. 
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This eliminates spurious ATR trends due to regional changes in 
background temperature (such as the “warming hole” over the 
eastern US; see Westby et al. 2013 for detailed discussion of this 
issue). Anomalous temperature episodes are then defined as the 
days during each winter when the local temperature anomaly 
exceeds (is below) a selected threshold value, taken to be +1 (-1) 
standard deviation for WW (CAO) events. For each winter, the 
impact factor metric is defined as the following sum (over either 
all WW or all CAO episodes):

where T is the local temperature anomaly, s is the standard 
deviation in temperature and N is the number of days each 
winter above (or below) the selected threshold. The impact factor 
metric thereby represents a seasonally-integrated and amplitude-
weighted measure of anomalous temperature episodes. This 
represents our seasonal metric for CAOs and WWs.

A trend analysis (not shown) reveals that there have been no 
statistically significant trends in either CAOs or WWs over most 
of the continental US during the past 60 years (Westby et al. 2013). 
The result for CAOs confirms earlier studies for the latter part of 
the 20th Century (Walsh et al. 2001) but also presents an interesting 
conundrum given that significant warming trends have occurred 
(over a similar time period) in regions of arctic air mass formation 
over North America (Hankes and Walsh 2011). The results are 
consistent with CAO behavior during recent winters (09/10; 10/11) 
that have been marked by prominent regional CAOs (Guirguis et 
al. 2011) within a background consisting of anomalously warm 
hemisphere-average winter temperatures (Cohen et al. 2010). 
This indicates that interannual ATR variability is controlled 
by factors besides simply changes in the mean background 
temperature. Interannual variations in the behavior of large-scale 
meteorological patterns (LSMPs) provide one such factor. 

There are different physical pathways for LSMPs to influence ATR 
variability. In terms of dynamical processes, an LSMP pattern 
can directly contribute to alterations in the regional patterns of 
temperature advection. An LSMP can also indirectly contribute by 
providing a low frequency modulation of smaller-scale variations, 
such as synoptic anticyclones and cyclones, which can directly 
produce ATR events on shorter time scales. A good example 
of the latter influence is the modulation of midlatitude storm 
track behavior by large-scale atmospheric blocking patterns. 
There are also important local impacts of LSMPs on ATRs. For 
example, an LSMP can interact with local topography (e.g., cold 
air damming) and/or land-sea boundaries (e.g., onshore/offshore 

flow) to produce a small-scale response that would otherwise not 
exist. This kind of behavior can lead to local asymmetries between 
the behavior of CAOs and WWs (Loikith and Broccoli 2012). 
We also note that LSMP-ATR linkages are not necessarily uni-
directional and it is possible for an ATR episode to feedback upon 
the responsible LSMP.

The local correlations between the seasonal mean impact factor 
and several low frequency mode measures are displayed in Fig. 
1 for both CAOs (left column) and WWs (right column). It is 
evident that the seasonal modulation of WWs by low frequency 
modes is considerably more robust over the continental US 
than that of CAOs. Overall, the positive (negative) phase of the 
NAO pattern favors the occurrence of warm (cold) events in the 
eastern (southeastern) United States. On the other hand, the 

Fig. 1 Correlation between the annual impact factor of cold days 
(left) and warm days (right) and the NAO index (top), PNA index 
(upper middle), PDO index (lower middle) and Nino 3.4 index 
(bottom) for the period 1950–2011: closed black contours indicate 
statistical significance at the 95% confidence level (Figure from 
Westby et al. 2013; The low-frequency mode indices are from 
NOAA’s Earth System Research Laboratory – http://www.esrl.
noaa.gov/psd/data/)

http://www.esrl.noaa.gov/psd/data/
http://www.esrl.noaa.gov/psd/data/
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negative phase of the PNA pattern tends to favor warm (cold) 
events over the southeastern (northwestern) US. Contrasting 
the results for the PNA, Pacific Decadal Oscillation (PDO) and 
ENSO we discover that ATR connections to climate modes are 
neither unique nor independent. In fact, the regional influence of 
the PNA pattern on ATRs resembles that of both the PDO and 
ENSO. Given that the midlatitude atmospheric patterns for both 
ENSO and the PDO have projections upon the PNA, this is not a 
surprising result. Over the southeast US the WW impact factor 
is modulated by multiple low frequency modes. A multiple linear 
regression analysis reveals that almost 50% of the interannual 
WW variability in the southeast US can be linked to the collective 
influence of low frequency modes (Westby et al. 2013).

In our study of CMIP5 model simulations ATR events are defined 
in the same manner as described above for observations. A rotated 
principle component analysis of monthly 500 hPa geopotential 
height anomalies is used to isolate the leading teleconnection 
patterns in CMIP5 model output (Barnston and Livezey 1987). 
Pattern correlation analysis is then used to select the model patterns 

most closely resembling the observed NAO and PNA (known as 
NAO-like and PNA-like patterns). PDO-like modes are identified 
from model output as the first loading vector of monthly mean sea 
surface temperature anomalies over the midlatitude North Pacific 
(Mantua and Hare 2002). ENSO-like modes are assessed in the 
model simulations in the same manner as the observed Nino-
3.4 index. Last, a k-means clustering analysis is used to group 
respective model patterns into categories with similar horizontal 
structures (additional details of the above methods are available 
in Westby et al. 2013 and Lee and Black 2013).

The CMIP model analysis indicates that WW (CAO) frequency is 
typically overestimated (underestimated) in the models. Similar 
to observations, little evidence is found in the model simulations 
of significant regional ATR trends. The relationship between the 
regional ATR impact factor and low frequency modes in CMIP5 
models is summarized in Fig. 2. Generally speaking, the CMIP5 
models properly represent many of the observed significant 
associations between ATRs and low frequency modes, particularly 
modulation by NAO-like and PNA-like patterns. One common 

Fig. 2 Correlation between the low frequency mode indices and the annual impact factor for CAOs (top row) and WWs (bottom 
row) occurring in the southeast US (left column), northeast US (middle column) and upper Midwest (right column) during the period  
1951–2005. Results are displayed for each of 16 CMIP5 models (gray lines) and observations (black lines). The filled red circles and 
black squares indicate correlation values that are statistically significant values at the 95% confidence level while the filled blue circles 
are the average correlation over the 16 models (figure from Westby et al. 2013).
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model failure is the virtual absence of a seasonal modulation of 
ATRs by the PDO. This is largely due to the inadequacy of the 
CMIP5 models in representing the PDO (e.g., Kim et al. 2012), 
which is dependent on an accurate representation of atmosphere-
ocean coupling processes in midlatitudes.

The CMIP5 models overall do a much better job in representing 
the behavior of the NAO and PNA patterns (Lee and Black 2013). 
Nonetheless, a small subset of CMIP5 models fails to correctly 
represent the structure of the NAO. This is illustrated in Fig. 3 
in which cluster mean model anomaly structures are plotted 
alongside the observed NAO pattern (left frame). Although both 
clusters #1 and #2 (comprising 12 of the 16 models considered) 
capture the typical north-south dipole structure of the NAO 
over the Atlantic (albeit with differences in pole location and 
local amplitude), cluster #3 (3 models) has more of a hemispheric 
annular structure with a relatively weak and northeastward shifted 
Atlantic dipole feature. Cluster #4 does not resemble the observed 
NAO pattern at all. Lee and Black (2013) also demonstrate that 
such model biases in low frequency mode structure carry over to 
the regional misrepresentation of associated anomalous weather 
conditions. Thus, we conclude by suggesting that predictions in 
the likely future behavior of ATRs and ATR-low frequency mode 
linkages will ultimately be limited by the ability of coupled global 
climate models to properly represent the (evolving) behavior of 
prominent low frequency climate modes.
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I  ntroduction: CLIVAR’s mission is to foster understanding and 
prediction of climate variability and change on intraseasonal to 

centennial time scales. Within this broader mission, advancing 
understanding and predictions of climate extremes poses a 
specific research challenge for CLIVAR that is of fundamental 
societal importance (US CLIVAR 2013). Here we identify how 
phenomena and processes across the temporal spectrum from 
climate to weather contributed to a specific extreme event, the 
March 2012 extreme warm temperatures over the central and 
eastern US. We also consider the extent to which this event 
might have been anticipated from prior climate information. 
The following is a brief summary of findings, with full results 
presented in a paper now in press (Dole et al. 2014).

Background and climate overview: March 2012 was the warmest 
March on record for the contiguous US, with temperatures 
averaging 4.8o C above normal according to the National Climatic 
Data Center (NCDC). Monthly-mean anomalies reached more 
than +9o C in the core of the heat wave region in the upper 
Midwest, with daily-mean temperature anomalies during the 
event exceeding +22o C (40o F) at several locations. The record 
warm temperatures led to premature blooming of trees, flowers 
and crops over the eastern two-thirds of the country (Elwood et 
al. 2013). Major fruit crop losses occurred subsequently in parts 
of the upper Midwest when more seasonal freezing temperatures 
returned in April (Allen 2012).

When viewed in the broader global context, the extreme warm 
temperatures in March 2012 had a distinct regional character (Fig. 
1a). Global-mean temperatures for the month were approximately 
0.7o C above the 20th century average (NCDC). The North 
American surface temperature pattern in March 2012 had a 
historical precedent in an event that occurred over a century 
earlier (Fig. 1b). The March 1910 US temperature anomaly was 
+4.5o C above the twentieth century average, or 0.3o C below 

that of March 2012. Compared to March 1910, the global-mean 
temperature in March 2012 was approximately 0.9o C higher, 
consistent with the general increase in global-mean temperatures 
during the 20th century that has been attributed mostly to human 
influences (Hegerl et al. 2007). 
 
Not all regions warmed at the same rate during this period (Fig. 
1c), with the core of the heat wave region experiencing a long-term 
warming of approximately 0.5-1o C. This is within the range of 
warming estimated from CMIP simulations forced by increasing 
greenhouse gas concentrations. A first-order estimate of the effect 
of the warming on the event can be obtained by subtracting the 
temperature changes estimated from the long-term regional 
trend from the March 2012 temperature anomalies (Fig. 1d). The 
resulting detrended March 2012 temperature anomaly pattern is 
nearly identical to that of March 1910 over the US, with considerable 
similarity evident in many other regions over the globe. The close 
correspondence in the core of the heat wave region reflects the fact 
the long-term warming is approximately an order-of-magnitude 
smaller than the magnitude of the event anomaly. Overall, this 
result indicates that a superposition of a strong natural variation 
similar to that observed in March 1910 onto long-term warming 
of approximately 0.5-1o C would be sufficient to account for the 
extreme magnitude of the March 2012 US temperature anomalies.

Contributions from seasonal-to interannual and subseasonal 
variability: The primary proximate cause for the extreme warm 
temperatures was intense and sustained poleward heat associated 
with a Rossby wavetrain extending northward and eastward 
from the western tropical Pacific, with major anticyclonic centers 
located just east of the dateline and over the Great Lakes, the 
latter directly related to the extreme warm temperatures (Dole 
et al. 2014). The key question then becomes: what factors were 
primarily responsible for this anomalous circulation pattern? 
From a seasonal perspective, the preceding winter (December-
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February) was characterized by La Niña conditions, with generally 
suppressed convection over the central Pacific and enhanced 
convection from the eastern Indian Ocean to over the Maritime 
Continent. This general pattern of convection intensified 
substantially from late February through mid-March, particularly 
over the western Maritime Continent in association with the slow 
eastward propagation of a Madden-Julian Oscillation (MJO). 
This constructive superposition of seasonal and intraseasonal 
convection patterns was followed by rapid development of the 
wavetrain and circulation anomalies that were directly related to 
the extreme warm temperatures over the US in March 2012. 

Coupled model predictions for March 2012 from the NOAA/
NCEP Climate Forecast System version 2 (CFSv2) initialized 

from late Fall 2011 through January 2012 showed very similar 
ensemble-mean temperature patterns, with above normal 
temperatures predicted over the eastern US and below normal 
temperatures predicted over the northwestern US, western 
Canada and Alaska (Dole et al. 2014). This general pattern 
was broadly similar to that observed in March 2012 (Fig. 1a), 
but with the maximum warm temperature anomalies in the 
model displaced eastward of the observed maximum. The high 
degree of consistency between ensemble predictions initialized 
over this period primarily reflects a forced model response to 
sea surface temperatures (SSTs) that were evolving on seasonal-
to-interannual time scales, with the response increasing the 
probability of an extreme warm event over the eastern US above 
that estimated from the long-term warming trend. 

Fig. 1 March surface temperature anomalies for a) 2012 and b) 1910. c) March temperature change derived from the trend over the 
111-year period 1901-2011.  d) Detrended March 2012 temperature anomalies. (Units: oC). Areas of insufficient data are indicated by 
stippling. Data are from the NCDC merged land-ocean dataset Version 3b (Smith et al. 2008). Anomalies are departures from means 
over a 1981-2010 base period.
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Predictions initialized in February, while sharing 
many common features, also had important 
differences from earlier runs. In particular, 
temperature predictions over the central and 
eastern US showed exceptionally strong positive 
anomalies (ensemble-mean temperature 
anomalies of approximately 2 standardized 
departures above the variability in model 
forecasts), with the epicenter of warm anomalies 
shifted northwestward over the Midwest closer to 
the pattern observed in March. The much stronger 
signal in the February predictions compared 
to predictions initialized earlier indicates that 
specific conditions emergent in early February, 
most likely in the atmospheric state, greatly 
increased the probability of extreme warm 
temperatures in March over the US and led to a 
predicted pattern of temperatures much closer to 
observed. The NOAA Climate Prediction Center 
capitalized on this ‘forecast of opportunity’ to 
anticipate the monthly temperature pattern very 
well, achieving its highest skill score to date for 
their March 2012 forecast for the contiguous US 
issued in mid-February. 

Putting the pieces together: Fig. 2 illustrates 
schematically how multiple pieces from longer-term climate 
trends to shorter-term weather and climate variations contributed 
to extreme warm temperatures over the US in March 2012. A long-
term March warming trend shifted the temperature probability 
distribution to the right (blue curve) from the climatological 
distribution (black curve) by approximately 1o C, increasing the 
probability of above normal temperatures and warm extremes. 
The addition of specific boundary conditions for 2011-2012, most 
likely related to tropical ocean conditions in the Indo-Pacific 
sector, increased the probability further (green curve). The large 
shift in the distribution that occurred in February associated with 
a strong MJO event (red curve) greatly increased the probability 
for an extremely warm March, and provided important additional 
predictive information on the timing and spatial pattern of 
temperature anomalies. 

Thus, several pieces from climate to weather ultimately linked 
together favorably to produce this extreme event. The probability 
that March 2012 would be exceptionally warm over the US 
evolved dynamically as different phenomena became predictable, 
thereby changing the conditional probability for extreme event 
occurrence. However, even at lead times of a few weeks extreme 

warm temperatures were far from certain. As the width of the 
distributions indicates, a large range of outcomes was possible, 
and what occurred could well have been otherwise. Estimating 
the time-evolving effects of multiple conditions on extreme event 
probability presents a difficult but important research challenge, 
with more general implications for what information might be 
provided and when it might be provided for better anticipating 
the possibility for extreme events. 

Overall, our results show that the extreme magnitude of the March 
2012 warmth can be largely explained by natural variability, with 
an additional contribution from a long-term warming trend that 
is likely due mostly to human influences. Phenomena evolving on 
centennial, interannual, intraseasonal and synoptic weather time 
scales were all factors in making this event extreme. Increased 
understanding of the connections between climate and weather, 
and especially the implications for anticipating future extreme 
events, will be essential for meeting many societal needs. While 
advances have been impressive, there remain many opportunities 
for further progress (Shapiro et al 2010; US CLIVAR 2013). 
CLIVAR research can play a central role in helping to achieve 
major scientific advances in this area over the next decade.

Fig. 2 A schematic representation of how predictions for the March 2012 
Probability Distribution Function (PDF) shifted away from the climatological 
distribution (black) in response to different factors. These include long-term 
trends and multi-decadal variations that evolve on time scales much longer 
than a season (blue), SSTs and other boundary forcings varying on seasonal-
to-interannual time scales (green), and the MJO and other shorter time-scale 
phenomena dominated by atmospheric processes varying on subseasonal-to-
daily time scales (red).
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We are pleased to announce the publica-
tion of the new US CLIVAR Science Plan  
outlining the research goals and strategies 
for the next 15 years of the program. 

Specifically, the Plan is intended to:

•	 Update	the	goals	and	priorities	of		 
US CLIVAR based on achievements  
to date;

•	 Articulate	the	expansion	of	core	research	 
to target specific research challenges;

•	 Emphasize	strengthened	ties	to	the	broader	Earth	Sciences	
community and relevance to societal impacts;

•	 Bolster	research	funding	commitments	by	US	agencies	to	
achieve their mission objectives; and

•	 Articulate	the	envisioned	collaborations	with	other	US	and	
international research programs.

Click the figure to 
download or request a 
printed copy of the Plan. 

New US CLIVAR Science Plan

Call for New Panelists –  
Opportunity to Shape the Program’s Future

The Plan was developed by the US CLIVAR Scientific Steering 
Committee over a 2-year period with input from its panels and 
members of the research community. We wish to acknowledge 
the significant effort of over 60 contributors to help scope, draft, 
review, and edit the Plan. The final document reflects revisions 
based on an open public review held this past summer. 

Two Town Halls are being held jointly with International CLIVAR 
to engage the community on the key components of the future US 
and International programs.  The presentations for the first, held 
at the 2013 AGU Fall Meeting, are available to download here.  
The second, planned for the Ocean Sciences meeting, will be held 
on Tuesday, February 25, from 6:30-8:30pm in Room 312 at the 
Hawaii Convention Center.  Please join us in Hawaii and learn of 
the future research directions and opportunities to get involved.

The SSC seeks qualified individuals to serve on its three 
subsidiary panels beginning in 2014. These Panels formulate 
science goals and implementation strategies, catalyze and 
coordinate activities, and work with agencies and international 
partners to advance the progress of the climate research 
community. It is a particularly exciting time to join the Panels, 
as they embark on planning activities to address the goals 

and research challenges articulated in the recently published  
US  CLIVAR Science Plan.

Consider nominating yourself or a colleague to serve. See the Call 
for New Panelists on our website for information on the expertise 
sought and the link to the online nomination form. Deadline for 
nominating is March 21.

http://www.environmentreport.org/show.php?showID=629
http://www.environmentreport.org/show.php?showID=629
10.1175/BAMS
10.1371/journal.pone
http://www.usclivar.org/science-plan
http://usclivar.org/sites/default/files/announcement/CLIVAR_TownHall_AGU2013.pdf
http://www.usclivar.org/2014-call-us-clivar-panel-member-nominations
http://www.usclivar.org/2014-call-us-clivar-panel-member-nominations
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TRANSITIONS

Thank You to Outgoing  
SSC and Panel Members

The US CLIVAR Scientific Steering Committee (SSC) expresses 
sincere gratitude to the following individuals for their years of 
service to planning and advancing US CLIVAR science.

SSC Members
Michael Bosilovich, Baylor Fox-Kemper, Lisa Goddard, and 
Jay McCreary

Phenomena, Observations, and Synthesis (POS) Panel
Nicholas Bond, Don Chambers, Simon de Szoeke, Benjamin 
Giese, Alexander Gershunov, Rick Lumpkin, and Rong 
Zhang

Process Study Model Improvement (PSMI) Panel
Michael Gregg, Meibing Jin,  Sukyoung Lee, and  
Robert Wood

Predictability, Prediction, and Applications Interface 
(PPAI) Panel
Annalisa Bracco, Curtis Deutsch, Joshua Xiouhua Fu,  
Ron Lindsay, Cristiana Stan, and Liqiang Sun

Welcome to  
New 2014 SSC Members

Two Panel members accepted the SSC invitation to serve as  
Panel co-chairs and on the SSC starting in 2014. Welcome aboard!

Yan Xue, POS Panel Co-chair
Gad Levy, PSMI Panel Co-chair

Gregg Garfin, PPAI Panel Co-chair

US Climate Variability and Predictability
(CLIVAR) Program
1201 New York Ave. NW, Suite 400
Washington, DC 20005
(202) 787-1681

US CLIVARClimate Variability & Predictabilit

y

US CLIVAR acknowledges support from these US agencies:

This material was developed with federal support of NASA (AGS-0963735),  
NOAA (NA11OAR4310213), NSF (AGS-0961146), and DOE (AGS-1357212). 

Any opinions, findings, conclusions or recommendations expressed in this material  
are those of the authors and do not necessarily reflect the views of the sponsoring agencies.

www.usclivar.org
uscpo@usclivar.org
twitter.com/usclivar

Search for  
Project Office  

Program Specialist
The University Corporation for Atmospheric Research 
is seeking applications for the position of Program 
Specialist II in the US CLIVAR Project Office located in 
Washington DC.  The incumbent will work closely with 
the Project Office Director to assist the US CLIVAR 
science community in planning and implementing 
coordinated research programs to achieve program 
goals; develop and deliver useful communication 
and outreach materials providing timely information 
on US CLIVAR science advances, programmatic 
directions, and new opportunities to a diverse set of 
audiences; and provide organizational support to 
facilitate interagency dialogue and enable work of US 
CLIVAR science planning and implementation bodies.
  
A Bachelor’s degree in oceanography, meteorology, or 
earth system science plus two years of work experience 
related to the job duties of the position, or an 
equivalent combination of education and experience 
(such as a Master’s degree and one year of experience) 
are required.  Experience in physical climate research 
and background in climate science directly relevant to 
the US CLIVAR Program are desired.

The full announcement is available at the UCAR 
Current Job Openings Portal, listed under 
Administration as a Program Specialist II.  Application 
deadline is Friday, March 14, 2014.
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